17 research outputs found
Focal salvage treatment for radiorecurrent prostate cancer: A magnetic resonance-guided stereotactic body radiotherapy versus high-dose-rate brachytherapy planning study
Background and Purpose: Magnetic resonance imaging (MRI)-guided focal salvage high-dose-rate brachytherapy (FS-HDR-BT) is one of the treatment options for radiorecurrent localized prostate cancer. However, due to the invasive nature of the treatment, not all patients are eligible. Magnetic resonance linear accelerator (MR-Linac) systems open up new treatment possibilities and could potentially replace FS-HDR-BT treatment. We conducted a planning study to investigate the feasibility of delivering a single 19 Gy dose to the recurrent lesion using a 1.5 Tesla MR-Linac system. Materials and Methods: Thirty patients who underwent FS-HDR-BT were included. The clinical target volume (CTV) encompassed the visible lesion plus a 5 mm margin. Treatment plans were created for a 1.5 Tesla MR-Linac system using a 1 mm planning target volume (PTV) margin. A dose of 19 Gy was prescribed to ≥ 95% of the PTV. In case this target could not be reached, i.e. when organs-at-risk (OAR) constraints were violated, a dose of ≥ 17 Gy to ≥ 90% of the PTV was accepted. MR-Linac plans were compared to clinical FS-HDR-BT plans. Results: Target dose coverage was achieved in 14/30 (47%) FS-HDR-BT plans and 17/30 (57%) MR-Linac plans, with comparable median D95% and D90%. In FS-HDR-BT plans, a larger volume reached ≥ 150% of the prescribed dose. Urethra D10%, rectum D1cm3, and rectum D2cm3 were lower in the FS-HDR-BT plans, while bladder dose was comparable for both modalities. Conclusion: Single fraction treatment of recurrent prostate cancer lesions may be feasible using stereotactic body radiotherapy (SBRT) on a MR-Linac system
Geometrical imaging accuracy, image quality and plan quality for prostate cancer treatments on a 1.5 T MRLinac in patients with a unilateral hip implant
Purpose. To assess the feasibility of prostate cancer radiotherapy for patients with a hip implant on an 1.5 T MRI-Linac (MRL) in terms of geometrical image accuracy, image quality, and plan quality. Methods. Pretreatment MRI images on a 1.5 T MRL and 3 T MRI consisting of a T2-weighted 3D delineation scan and main magnetic field homogeneity (B 0) scan were performed in six patients with a unilateral hip implant. System specific geometrical errors due to gradient nonlinearity were determined for the MRL. Within the prostate and skin contour, B 0 inhomogeneity, gradient nonlinearity error and the total geometrical error (vector summation of the prior two) was determined. Image quality was determined by visually scoring the extent of implant-born image artifacts. A treatment planning study was performed on five patients to quantify the impact of the implant on plan quality, in which conventional MRL IMRT plans were created, as well as plans which avoid radiation through the left or right femur. Results. The total maximum geometrical error in the prostate was <1 mm and the skin contour <1.7 mm; in all cases the machine-specific gradient error was most dominant. The B 0 error for the MRlinac MRI could partly be predicted based on the pre-treatment 3 T scan. Image quality for all patients was sufficient at 1.5 T MRL. Plan comparison showed that, even with avoidance of the hips, in all cases sufficient target coverage could be obtained with similar D1cc and D5cc to rectum and bladder, while V28Gy was slightly poorer in only the rectum for femur avoidance. Conclusion. We showed that geometrical accuracy, image quality and plan quality for six prostate patients with a hip implant or hip fixation treated on a 1.5 T MRL did not show relevant deterioration for the used image settings, which allowed safe treatment
Adaptive magnetic resonance-guided neurovascular-sparing radiotherapy for preservation of erectile function in prostate cancer patients
Background and purpose: Erectile dysfunction is a common adverse effect of external beam radiation therapy for localized prostate cancer (PCa), likely as a result of damage to neural and vascular tissue. Magnetic resonance-guided online adaptive radiotherapy (MRgRT) enables high-resolution MR imaging and paves the way for neurovascular-sparing approaches, potentially lowering erectile dysfunction after radiotherapy for PCa. The aim of this study was to assess the planning feasibility of neurovascular-sparing MRgRT for localized PCa. Materials and methods: Twenty consecutive localized PCa patients, treated with standard 5×7.25 Gy MRgRT, were included. For these patients, neurovascular-sparing 5×7.25 Gy MRgRT plans were generated. Dose constraints for the neurovascular bundle (NVB), the internal pudendal artery (IPA), the corpus cavernosum (CC), and the penile bulb (PB) were established. Doses to regions of interest were compared between the neurovascular-sparing plans and the standard clinical pre-treatment plans. Results: Neurovascular-sparing constraints for the CC, and PB were met in all 20 patients. For the IPA, constraints were met in 19 (95%) patients bilaterally and 1 (5%) patient unilaterally. Constraints for the NVB were met in 8 (40%) patients bilaterally, in 8 (40%) patients unilaterally, and were not met in 4 (20%) patients. NVB constraints were not met when gross tumor volume (GTV) was located dorsolaterally in the prostate. Dose to the NVB, IPA, and CC was significantly lower in the neurovascular-sparing plans. Conclusions: Neurovascular-sparing MRgRT for localized PCa is feasible in the planning setting. The extent of NVB sparing largely depends on the patient's GTV location in relation to the NVB
Stereotactic Radiotherapy Followed by Surgical Stabilization Within 24 h for Unstable Spinal Metastases; A Stage I/IIa Study According to the IDEAL Framework
Background: Routine treatment for unstable spinal metastases consists of surgical stabilization followed by external beam radiotherapy (EBRT) or stereotactic body radiotherapy (SBRT) after a minimum of 1–2 weeks to allow for initial wound healing. Although routine treatment, there are several downsides. First, radiotherapy induced pain relief is delayed by the time interval required for wound healing. Second, EBRT often requires multiple hospital visits and only 60% of the patients experience pain relief. Third, spinal implants cause imaging artifacts hindering SBRT treatment planning and delivery. Reversing the order of surgery and radiotherapy, with dose sparing of the surgical area by SBRT, could overcome these disadvantages and by eliminating the interval between the two treatments, recovery, and palliation may occur earlier.Design: The safety of SBRT followed by surgical stabilization within 24 h for the treatment of unstable spinal metastases was investigated. Safety was evaluated using the Common-Toxicity-Criteria-Adverse-Events-4.0, with the occurrence of wound complications within 90-days being the primary concern.Results: Between June-2015 and January-2017, 13 patients underwent SBRT followed by surgical stabilization for unstable spinal metastases. The median time between SBRT and surgery was 17-h (IQR 5–19). None of the patients experienced wound complications. Improvements in pain and quality of life were observed over time for all patients.Conclusion: SBRT followed by surgical stabilization within 24 h for the treatment of unstable spinal metastases is safe. Palliation may be experienced earlier and with both treatments being performed in one hospital admission the treatment burden decreases
Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system
Background and purpose: Monitoring the intrafraction motion and its impact on the planned dose distribution is of crucial importance in radiotherapy. In this work we quantify the delivered dose for the first prostate patients treated on a combined 1.5T Magnetic Resonance Imaging (MRI) and linear accelerator system in our clinic based on online 3D cine-MR and treatment log files. Materials and methods: A prostate intrafraction motion trace was obtained with a soft-tissue based rigid registration method with six degrees of freedom from 3D cine-MR dynamics with a temporal resolution of 8.5–16.9 s. For each fraction, all dynamics were also registered to the daily MR image used during the online treatment planning, enabling the mapping to this reference point. Moreover, each fraction's treatment log file was used to extract the timestamped machine parameters during delivery and assign it to the appropriate dynamic volume. These partial plans to dynamic volume combinations were calculated and summed to yield the delivered fraction dose. The planned and delivered dose distributions were compared among all patients for a total of 100 fractions. Results: The clinical target volume underwent on average a decrease of 2.2% ± 2.9% in terms of D99% coverage while bladder V62Gy was increased by 1.6% ± 2.3% and rectum V62Gy decreased by 0.2% ± 2.2%. Conclusions: The first MR-linac dose reconstruction results based on prostate tracking from intrafraction 3D cine-MR and treatment log files are presented. Such a pipeline is essential for online adaptation especially as we progress to MRI-guided extremely hypofractionated treatments
Impact of magnetic resonance-guided versus conventional radiotherapy workflows on organ at risk doses in stereotactic body radiotherapy for lymph node oligometastases
Background and purpose: Magnetic resonance (MR)-linac delivery is expected to improve organ at risk (OAR) sparing. In this study, OAR doses were compared for online adaptive MR-linac treatments and conventional cone beam computed tomography (CBCT)-linac radiotherapy, taking into account differences in clinical workflows, especially longer session times for MR-linac delivery. Materials and methods: For 25 patients with pelvic/abdominal lymph node oligometastases, OAR doses were calculated for clinical pre-treatment and daily optimized 1.5 T MR-linac treatment plans (5 × 7 Gy) and compared with simulated CBCT-linac plans for the pre-treatment and online anatomical situation. Bowelbag and duodenum were re-contoured on MR-imaging acquired before, during and after each treatment session. OAR hard constraint violations, D 0.5cc and D 10cc values were evaluated, focusing on bowelbag and duodenum. Results: Overall, hard constraints for all OAR were violated less often in daily online MR-linac treatment plans compared with CBCT-linac: in 5% versus 22% of fractions, respectively. D 0.5cc and D 10cc values did not differ significantly. When taking treatment duration and intrafraction motion into account, estimated delivered doses to bowelbag and duodenum were lower with CBCT-linac if identical planning target volume (PTV) margins were used for both modalities. When reduced PTV margins were achievable with MR-linac treatment, bowelbag doses were lower compared with CBCT-linac. Conclusions: Compared with CBCT-linac treatments, the online adaptive MR-linac approach resulted in fewer hard planning constraint violations compared with single-plan CBCT-linac delivery. With respect to other bowelbag/duodenum dose-volume parameters, the longer duration of MR-linac treatment sessions negatively impacts the potential dosimetric benefit of daily adaptive treatment planning
Bringing online adaptive radiotherapy to a standard C-arm linac
Current online adaptive radiotherapy (oART) workflows require dedicated equipment. Our aim was to develop and implement an oART workflow for a C-arm linac which can be performed using standard clinically available tools. A workflow was successfully developed and implemented. Three patients receiving palliative radiotherapy for bladder cancer were treated, with 33 of 35 total fractions being delivered with the cone-beam computed tomography (CBCT)-guided oART workflow. Average oART fraction duration was 24 min from start of CBCT acquisition to end of beam on. This work shows how oART could be performed without dedicated equipment, broadening oART availability for application at existing treatment machines