8 research outputs found
Assessment of a Wind Turbine Blade Erosion Lifetime Prediction Model with Industrial Protection Materials and Testing Methods
Leading edge protection (LEP) coating systems are applied to protect turbine blade edges from rain erosion. The performance of a LEP system is assessed in an accelerated rain erosion test (RET) as a metric for industrial application, but these tests are expensive. Modelling methods are available to predict erosion, based on fundamental material properties, but there is a lack of validation. The Springer model (1976) is analysed in this work to assess it as a tool for using material fundamental properties to predict the time to failure in a rain erosion test. It has been applied, referenced and industry validated with important partial considerations. The method has been applied successfully for erosion damage by wear performance prediction when combined with prior material data from rain erosion test (RET), instead of obtaining it directly from fundamental properties measured separately as Springer proposed. The method also offers accurate predictions when coupled with modified numerical parameters obtained from experimental RET testing data. This research aims to understand the differences between the experimental data used by Springer and the current industry approach to rain erosion testing, and to determine how it may introduce inaccuracies into lifetime predictions of current LEP systems, since they are very different to those tested in the historic modelling validation. In this work, a review of the modelling is presented, allowing for the understanding of key issues of its computational implementation and the required experimental material characterisation. Modelling results are discussed for different original application issues and industry-related LEP configuration cases, offering the reader to interpret the limits of the performance prediction when considering the variation in material fundamental properties involved
Multilayer Leading Edge Protection systems of Wind Turbine Blades: A review of material technology and damage modelling
In the immediate future, wind power will provide more electricity than any other technology based on renewable and low-emission energy sources. As a result, the size of offshore wind turbines has increased to harvest more wind energy in order to achieve the 2050 EU carbon neutral targets. The use of composites opens great prospects in the design and manufacture of the wind turbine blades due to their optimization versatility but composites perform poorly under impact and are sensitive to environmental factors. To combat this, blade manufacturers employ polymer-based surface coatings, caps or tapes to protect the composite structure. However, it is the repeated impact of rain droplets combined with the high blade tip speed, which are mostly contributing to the erosion of wind turbine blades [1]. The hindering of leading-edge erosion could be obtained through its multilayer material optimization i.e. Leading Edge Protection LEP [2]. Both the surface erosion and the intra-layer adhesion are affected by the shock wave propagation through the thickness of the LEP system produced from the collapsing water droplet after impact [3]. It is necessary to increase the interfacial fracture toughness resistance of the multy-layered system from the surface to the interface boundaries to damp the surface damage and avoid subsurface delamination [4]. Therefore, validated models considering the developed multicomplex stress states and the material degradation due to environmental loads are required for design purposes toward anti-erosion protection performance. This investigation summarizes the review of the current literature conducted in the framework of the IEA Wind TCP (International Energy Agency Wind Technology Collaboration Programme) - Task 46 Erosion of wind turbine blades [5]. It focuses on two main issues: firstly, the LEP material configuration used in industry considering the blade integration technology and, secondly, the modelling techniques and numerical procedures currently used to predict both wear surface damage and interface delamination failure. This work will allow for the identification of gaps within the research that can be explored during IEA Wind Task 46
Multilayer Leading Edge Protection systems of Wind Turbine Blades: A review of material technology and damage modelling
In the immediate future, wind power will provide more electricity than any other technology based on renewable and low-emission energy sources. As a result, the size of offshore wind turbines has increased to harvest more wind energy in order to achieve the 2050 EU carbon neutral targets. The use of composites opens great prospects in the design and manufacture of the wind turbine blades due to their optimization versatility but composites perform poorly under impact and are sensitive to environmental factors. To combat this, blade manufacturers employ polymer-based surface coatings, caps or tapes to protect the composite structure. However, it is the repeated impact of rain droplets combined with the high blade tip speed, which are mostly contributing to the erosion of wind turbine blades [1]. The hindering of leading-edge erosion could be obtained through its multilayer material optimization i.e. Leading Edge Protection LEP [2]. Both the surface erosion and the intra-layer adhesion are affected by the shock wave propagation through the thickness of the LEP system produced from the collapsing water droplet after impact [3]. It is necessary to increase the interfacial fracture toughness resistance of the multy-layered system from the surface to the interface boundaries to damp the surface damage and avoid subsurface delamination [4]. Therefore, validated models considering the developed multicomplex stress states and the material degradation due to environmental loads are required for design purposes toward anti-erosion protection performance. This investigation summarizes the review of the current literature conducted in the framework of the IEA Wind TCP (International Energy Agency Wind Technology Collaboration Programme) - Task 46 Erosion of wind turbine blades [5]. It focuses on two main issues: firstly, the LEP material configuration used in industry considering the blade integration technology and, secondly, the modelling techniques and numerical procedures currently used to predict both wear surface damage and interface delamination failure. This work will allow for the identification of gaps within the research that can be explored during IEA Wind Task 46.Aerospace Manufacturing Technologie