1,898 research outputs found
Urinary naphthalene and phenanthrene as biomarkers of occupational exposure to polycyclic aromatic hydrocarbons.
OBJECTIVES: The study investigated the utility of unmetabolised naphthalene (Nap) and phenanthrene (Phe) in urine as surrogates for exposures to mixtures of polycyclic aromatic hydrocarbons (PAHs). METHODS: The report included workers exposed to diesel exhausts (low PAH exposure level, n = 39) as well as those exposed to emissions from asphalt (medium PAH exposure level, n = 26) and coke ovens (high PAH exposure level, n = 28). Levels of Nap and Phe were measured in urine from each subject using head space-solid phase microextraction and gas chromatography-mass spectrometry. Published levels of airborne Nap, Phe and other PAHs in the coke-producing and aluminium industries were also investigated. RESULTS: In post-shift urine, the highest estimated geometric mean concentrations of Nap and Phe were observed in coke-oven workers (Nap: 2490 ng/l; Phe: 975 ng/l), followed by asphalt workers (Nap: 71.5 ng/l; Phe: 54.3 ng/l), and by diesel-exposed workers (Nap: 17.7 ng/l; Phe: 3.60 ng/l). After subtracting logged background levels of Nap and Phe from the logged post-shift levels of these PAHs in urine, the resulting values (referred to as ln(adjNap) and ln(adjPhe), respectively) were significantly correlated in each group of workers (0.71 < or = Pearson r < or = 0.89), suggesting a common exposure source in each case. Surprisingly, multiple linear regression analysis of ln(adjNap) on ln(adjPhe) showed no significant effect of the source of exposure (coke ovens, asphalt and diesel exhaust) and further suggested that the ratio of urinary Nap/Phe (in natural scale) decreased with increasing exposure levels. These results were corroborated with published data for airborne Nap and Phe in the coke-producing and aluminium industries. The published air measurements also indicated that Nap and Phe levels were proportional to the levels of all combined PAHs in those industries. CONCLUSION: Levels of Nap and Phe in urine reflect airborne exposures to these compounds and are promising surrogates for occupational exposures to PAH mixtures
An Integrated Assessment and Management Optimization System for Grazinglands
Rangelands and pasturelands are often assessed using different methodologies. The Interpreting Indicators of Rangeland Health and Pasture Condition Scoring methodologies, two techniques used widely across the USA, were developed for rangelands and pasturelands respectively. These two grazingland assessment techniques were determined to be complementary and if integrated could provide an optimized approach to measure grazinglands without regards to specific use (i.e. range or pasture). We present an improved grazingland assessment protocol that merges indicators and attributes from Interpreting Indicators of Rangeland Health and Pasture Condition Scoring methodologies. This Integrated Grazingland Assessment (IGA) approach allows evaluators to assess site conditions and to make interpretations regarding management based on site-specific attributes (soil and site stability, hydrologic function, biotic integrity) that can potentially optimize the ecological potential and livestock carrying capacity of a site. The IGA provides a way of detecting changes in these ecological attributes relative to a site\u27s ecological potential. The IGA can also inform land managers about the utility of an area for livestock production or factors that could be keeping the area from operating at its full productive potential, while accounting for the different management objectives (e.g. increase productivity while maintaining native rangeland, optimizing seed mixes to improve planted pasture productivity) for the grazinglands where these methods are usually applied
Remote Detection of Acoustic Boundaries Using Radiation Imaging Operators
In this paper, we present an acoustic imaging operator. This operator is based upon combining the material boundary conditions at an acoustic boundary and the radiation boundary conditions associated with one way wave propagation. Numerical examples, using the second-order imaging operator, are presented in order to demonstrate the applicability of this method to the detection of two-dimensional boundaries
Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data
Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return LIght Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10° 26âČ N, 83° 59âČ W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r2 = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r2 = 0.51) and tree density (p-value = 0.002, r2 = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r2 = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties
Intermanifold similarities in partial photoionization cross sections of helium
Using the eigenchannel R-matrix method we calculate partial photoionization
cross sections from the ground state of the helium atom for incident photon
energies up to the N=9 manifold. The wide energy range covered by our
calculations permits a thorough investigation of general patterns in the cross
sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf
54}, 2080 (1996)]. The existence of these patterns can easily be understood in
terms of propensity rules for autoionization. As the photon energy is increased
the regular patterns are locally interrupted by perturber states until they
fade out indicating the progressive break-down of the propensity rules and the
underlying approximate quantum numbers. We demonstrate that the destructive
influence of isolated perturbers can be compensated with an energy-dependent
quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte
Regional anesthesia decreases complications and resource utilization in shoulder arthroplasty patients
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142932/1/aas13063_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142932/2/aas13063.pd
Recommended from our members
Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee
The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable
- âŠ