21 research outputs found

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1

    Get PDF

    Planck Early Results XXVI: Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray luminous and massive galaxy cluster at z~1

    Get PDF
    We present first results on PLCK G266.6-27.3, a galaxy cluster candidate detected at a signal-to-noise ratio of 5 in the Planck All Sky survey. An XMM-Newton validation observation has allowed us to confirm that the candidate is a bona fide galaxy cluster. With these X-ray data we measure an accurate redshift, z = 0.94 +/- 0.02, and estimate the cluster mass to be M_500 = (7.8 +/- 0.8)e+14 solar masses. PLCK G266.6-27.3 is an exceptional system: its luminosity of L_X(0.5-2.0 keV)=(1.4 +/- 0.05)e+45 erg/s, equals that of the two most luminous known clusters in the z > 0.5 universe, and it is one of the most massive clusters at z~1. Moreover, unlike the majority of high-redshift clusters, PLCK G266.6-27.3 appears to be highly relaxed. This observation confirms Planck's capability of detecting high-redshift, high-mass clusters, and opens the way to the systematic study of population evolution in the exponential tail of the mass function.Comment: 6 pages, 3 figures; final version accepted for publication in A&A ; minor changes in Sec.2.,3.2 and 4.1; Table 1: misprint on R500 error corrected; abundance value adde

    Planck intermediate results: II. Comparison of sunyaev-zeldovich measurements from planck and from the arcminute microkelvin imager for 11 galaxy clusters

    Get PDF

    Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. © ESO, 2013

    Planck intermediate results: IV. the XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF

    Planck intermediate results XIII : Constraints on peculiar velocities

    Get PDF
    Peer reviewe

    Exploring Cosmic Origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation havethe potential to answer some of the most fundamental questions of modernphysics and cosmology. In this paper, we list the requirements for a future CMBpolarisation survey addressing these scientific objectives, and discuss thedesign drivers of the CORE space mission proposed to ESA in answer to the "M5"call for a medium-sized mission. The rationale and options, and themethodologies used to assess the mission's performance, are of interest toother future CMB mission design studies. CORE is designed as a near-ultimateCMB polarisation mission which, for optimal complementarity with ground-basedobservations, will perform the observations that are known to be essential toCMB polarisation scienceand cannot be obtained by any other means than adedicated space mission

    Planck intermediate results: VIII. Filaments between interacting clusters

    Get PDF

    Planck intermediate results V : Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect

    Get PDF
    This article has an erratum: http://dx.doi.org/10.1051/0004-6361/201220040ePeer reviewe
    corecore