193 research outputs found
Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms.
Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5′ untranslated regions (5′ UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5′ UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5′ UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene
Use of norovirus genotype profiles to differentiate origins of foodborne outbreaks
Because secondary transmission masks the connection between sources and outbreaks, estimating the proportion of foodborne norovirus infections is difficult. We studied whether norovirus genotype frequency distributions (genotype profiles) can enhance detection of the sources of foodborne outbreaks. Control measures differ substantially; therefore, differentiating this transmission mode from person-borne or food handler-borne outbreaks is of public health interest. Comparison of bivalve mollusks collected during monitoring (n = 295) and outbreak surveillance strains (n = 2,858) showed 2 distinguishable genotype profiles in 1) human feces and 2) source-contaminated food and bivalve mollusks; genotypes I.2 and I.4 were more frequently detected in foodborne outbreaks. Overall, ≈21% of all outbreaks were foodborne; further analysis showed that 25% of the outbreaks reported as food handler-associated were probably caused by source contamination of the food
- …