16 research outputs found

    LCA of energetic biomass utilization: actual projects and new developments—April 23, 2012, Berne, Switzerland

    Get PDF
    Introduction: In the last years, the use of biomass for energy purposes has been seen as a promising option to reduce the use of nonrenewable energy sources and the emissions of fossil carbon. However, LCA studies have shown that the energetic use of biomass also causes impacts on climate change and, furthermore, that different environmental issues arise, such as land use and agricultural emissions. While biomass is renewable, it is not an unlimited resource. Its use, to whatever purpose, must therefore be well studied to promote the most efficient option with the least environmental impacts. The 47th LCA Discussion Forum gathered several national and international speakers who provided a broad and qualified view on the topic. Summary of the topics presented in DF 47: Several aspects of energetic biomass use from a range of projects financed by the Swiss Federal Office of Energy (SFOE) were presented in this Discussion Forum. The first session focused on important aspects of the agricultural biogas production like the use of high energy crops or catch crops as well as the influence of plant size on the environmental performance of biogas. In the second session, other possibilities of biomass treatment like direct combustion, composting, and incineration with municipal waste were presented. Topic of the first afternoon session was the update and harmonization of biomass inventories and the resulting new assessment of biofuels. The short presentations investigated some further aspects of the LCA of bioenergy like the assessment of spatial variation of greenhouse gas (GHG) emissions from bioenergy production in a country, the importance of indirect land use change emissions on the overall results, the assessment of alternative technologies to direct spreading of digestate or the updates of the car operation datasets in ecoinvent. Conclusions: One main outcome of this Discussion Forum is that bioenergy is not environmentally friendly per se. In many cases, energetic use of biomass allows a reduction of GHG and fossil energy use. However, there is often a tradeoff with other environmental impacts linked to agricultural production like eutrophication or ecotoxicity. Methodological challenges still exist, like the assessment of direct and indirect land use change emissions and their attribution to the bioenergy production, or the influence of heavy metal flows on the bioenergy assessment. Another challenge is the implementation of a life cycle approach in certification or legislation schemes, as shown by the example of the Renewable Energy Directive of the European Unio

    Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem

    Get PDF
    In a 4-year lysimeter experiment, we investigated the effects of topsoil heavy metal pollution (3,000mg kg−1 Zn, 640mg kg−1 Cu, 90mg kg−1 Pb and 10mg kg−1 Cd) and (synthetic) acid rain (pH3.5) on tree growth and water use efficiency of young forest ecosystems consisting of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of understorey plants. The treatments were applied in a Latin square factorial design (contaminated vs uncontaminated topsoil, acidified rain vs ambient rain) to 16 open-top chambers, with 4 replicates each. Each open-top chamber contained two lysimeters, one with a calcareous, and the other with acidic subsoil. The four tree species responded quite differently to heavy metal pollution and type of subsoil. The fine root mass, which was only sampled at the end of the experiment in 2003, was significantly reduced by heavy metal pollution in P. abies, P. tremula and B. pendula, but not in S. viminalis. The metal treatment responses of above-ground biomass and leaf area varied between years. In 2002, the heavy metal treatment reduced above-ground biomass and leaf area in P. tremula, but not in the other species. In 2003, metals did not reduce above-ground growth in P. tremula, but did so in the other species. It appears that the responses in above-ground biomass and leaf area, which paralleled each other, were related to changes in the relative competitive strength of the various species in the two experimental years. S. viminalis gained relative to P. tremula in absence of metal stress, in particular on calcareous subsoil, while P. abies showed the largest increases in growth rates in all treatments. Above- and below-ground growth was strongly inhibited by acidic subsoil in S. viminalis and to a lesser degree also in P. abies. In P. abies, this subsoil effect was enhanced by metal stress. Acid rain was not found to have any substantial effect. Whole-system water use efficiency was reduced by metal stress and higher on calcareous than on acidic subsoi

    Water regime of metal-contaminated soil under juvenile forest vegetation

    Get PDF
    In a three-year factorial lysimeter study in Open Top Chambers (OTCs), we investigated the effect of topsoil pollution by the heavy metals Zn, Cu, and Cd on the water regime of newly established forest ecosystems. Furthermore, we studied the influence of two types of uncontaminated subsoils (acidic vs. calcareous) and two types of irrigation water acidity (ambient rainfall chemistry vs. acidified chemistry) on the response of the vegetation. Each of the eight treatment combinations was replicated four times. The contamination (2700mgkg−1 Zn, 385mgkg−1 Cu and 10mg kg−1 Cd) was applied by mixing filter dust from a non-ferrous metal smelter into the upper 15cm of the soil profile, consisting of silty loam (pH6.5). The same vegetation was established in all 32 lysimeters. The model forest ecosystem consisted of seedlings of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of herbaceous understorey plants. Systematic and significant effects showed up in the second and third growing season after canopies had closed. Evapotranspiration was reduced in metal contaminated treatments, independent of the subsoil type and acidity of the irrigation water. This effect corresponded to an even stronger reduction in root growth in the metal treatments. In the first two growing seasons, evapotranspiration was higher on the calcareous than on the acidic subsoil. In the third year the difference disappeared. Acidification of the irrigation water had no significant effect on water consumption, although a tendency to enhance evapotranspiration became increasingly manifest in the second and third year. Soil water potentials indicated that the increasing water consumption over the years was fed primarily by intensified extraction of water from the topsoil in the lysimeters with acidic subsoil, whereas also lower depths became strongly exploited in the lysimeters with calcareous subsoil. These patterns agreed well with the vertical profiles of fine root density related with the two types of subsoil. Leaf transpiration measurements and biomass samples showed that different plant species in part responded quite differently and occasionally even in opposite ways to the metal treatments and subsoil conditions. They suggest that the year-to-year changes in treatment effects on water consumption and extraction patterns were related to differences in growth dynamics, as well as to shifts in competitiveness of the various species. Results showed that the uncontaminated subsoil offered a possibility to compensate the reduction in root water extraction in the topsoil under drought, as well as metal stres

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Publisher Copyright: © 2019, The Author(s).Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.Peer reviewe

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria
    corecore