244 research outputs found
Chagas' disease and AIDS
Chagas' disease caused by Trypanosoma cruzi is an opportunistic infection in the setting of HIV/AIDS. Some individuals with HIV and chronic T. cruzi infection may experience a reactivation, which is most commonly manifested by meningoencephalitis. A reactivation myocarditis is the second most common manifestation. These presentations may be difficult to distinguish from toxoplasmosis in individuals with HIV/AIDS. The overlap of HIV and Trypanosoma cruzi infection occurs not only in endemic areas but also in non-endemic areas of North America and Europe where the diagnosis may be even more difficult. The pathological features, diagnosis and the role of cytokines in the pathogenesis of the disease are discussed
Diagnosis of Infections Caused by Pathogenic Free-Living Amoebae
Naegleria fowleri, Acanthamoeba spp., Balamuthia mandrillaris, and Sappinia sp. are pathogenic free-living amoebae. N. fowleri causes Primary Amoebic Meningoencephalitis, a rapidly fatal disease of the central nervous system, while Acanthamoeba spp. and B. mandrillaris cause chronic granulomatous encephalitis. Acanthamoeba spp. also can cause cutaneous lesions and Amoebic Keratitis, a sight-threatening infection of the cornea that is associated with contact lens use or corneal trauma. Sappinia pedata has been identified as the cause of a nonlethal case of amoebic encephalitis. In view of the potential health consequences due to infection with these amoebae, rapid diagnosis is critical for early treatment. Microscopic examination and culture of biopsy specimens, cerebral spinal fluid (CSF), and corneal scrapings have been used in the clinical laboratory. For amoebic keratitis, confocal microscopy has been used to successfully identify amoebae in corneal tissue. More recently, conventional and real-time PCR assays have been developed that are sensitive and specific for the amoebae. In addition, multiplex PCR assays are available for the rapid identification of these pathogens in biopsy tissue, CSF, and corneal specimens
Perspectives on Adipose Tissue, Chagas Disease and Implications for the Metabolic Syndrome
The contribution of adipose tissue an
autocrine and endocrine organ in the
pathogenesis of infectious disease and metabolic
syndrome is gaining attention. Adipose tissue
and adipocytes
are one of the major targets of T. cruzi infection. Parasites are detected 300 days postinfection in adipose tissue. Infection of adipose tissue and cultured adipocytes triggered local
expression of inflammatory mediators resulting in the upregulation of cytokine and chemokine
levels. Adipose tissue obtained from infected mice display an increased infiltration of
inflammatory cells. Adiponectin, an adipocyte specific protein, which exerts antiinflammatory
effects, is reduced during the acute phase of infection. The antiinflammatory regulator
peroxisome proliferator activated receptor-γ (PPAR-γ) is downregulated in infected cultured
adipocytes and adipose tissue. T. cruzi infection is associated with an upregulation of signaling
pathways such as MAPKs, Notch and cyclin D, and reduced caveolin-1 expression.
Adiponectin null mice have a cardiomyopathy and thus we speculate that the T. cruzi-induced
reduction in adiponectin contributes to the T. cruzi-induced cardiomyopathy. While T. cruzi infection causes hypoglycemia which correlates with mortality, hyperglycemia is associated
with increased parasitemia and mortality. The T. cruzi-induced increase in macrophages in
adipose tissue taken together with the reduction in adiponectin and the associated
cardiomyopathy is reminiscent of the metabolic syndrome
Trypanosoma cruzi Utilizes the Host Low Density Lipoprotein Receptor in Invasion
Trypanosoma cruzi, an intracellular protozoan parasite that causes Chagas disease in humans and results in the development of cardiomyopathy, is a major health problem in endemic areas. This parasite can invade a wide variety of mammalian cells. The mechanisms by which these parasites invade their host cells are not completely understood. Our study highlights, for the first time, that the Low Density Lipoprotein receptor (LDLr) is important in the invasion and the subsequent fusion of the parasitophorous vacuole with host lysosomes. We demonstrate that T. cruzi directly binds to LDLr, and inhibition or disruption of LDLr significantly decreases parasite entry. Additionally, we have determined that this cross-linking triggers the accumulation of LDLr and phosphotidylinositol phosphates in coated pits, which initiates a signaling cascade that results in the recruitment of lysosomes, possibly via the sorting motif in the cytoplasmic tail of LDLr, to the site of adhesion/invasion. Studies of infected CD1 mice demonstrate that LDLs accumulate in infected heart and that LDLr co-localize with internalized parasites. Overall, this study demonstrates that LDLr and its family members, engaged mainly in lipoprotein transportation, are also involved in T. cruzi entry into host cells and this interaction likely contributes to the progression of chronic cardiomyopathy
Cell Therapy in Chagas Disease
Chagas disease which is caused by the parasite Trypanosoma cruzi is an important cause of cardiomyopathy in Latin America. In later stages chagasic cardiomyopathy is associated with congestive heart failure which is often refractory to medical therapy. In these individuals heart transplantation has been attempted. However, this procedure is fraught with many problems attributable to the surgery and the postsurgical administration of immunosuppressive drugs. Studies in mice suggest that the transplantation of bone-marrow-derived cells ameliorates the inflammation and fibrosis in the heart associated with this infection. Cardiac magnetic resonance imaging reveals that bone marrow transplantation ameliorates the infection induced right ventricular enlargement. On the basis of these animal studies the safety of autologous bone marrow transplantation has been assessed in patients with chagasic end-stage heart disease. The initial results are encouraging and more studies need to be performed
Bradykinin B2 Receptors of Dendritic Cells, Acting as Sensors of Kinins Proteolytically Released by Trypanosoma cruzi, Are Critical for the Development of Protective Type-1 Responses
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R−/− mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R−/− heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-γ-producing CD4+ and CD8+ T cells in the spleen of B2R−/− and wild-type mice. However, production of IFN-γ by effector T cells isolated from B2R−/− heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-γ-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R−/− mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R−/− mice was linked to upregulated secretion of IL-17 and TNF-α by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R−/− mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R−/− mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection
Development of a rapid serological assay for the diagnosis of strongyloidiasis using a novel diffraction-based biosensor technology.
BACKGROUND: Strongyloidiasis is a persistent human parasitic infection caused by the intestinal nematode, Strongyloides stercoralis. The parasite has a world-wide distribution, particularly in tropical and subtropical regions with poor sanitary conditions. Since individuals with strongyloidiasis are typically asymptomatic, the infection can persist for decades without detection. Problems arise when individuals with unrecognized S. stercoralis infection are immunosuppressed, which can lead to hyper-infection syndrome and disseminated disease with an associated high mortality if untreated. Therefore a rapid, sensitive and easy to use method of diagnosing Strongyloides infection may improve the clinical management of this disease. METHODOLOGY/PRINCIPAL FINDINGS: An immunological assay for diagnosing strongyloidiasis was developed on a novel diffraction-based optical bionsensor technology. The test employs a 31-kDa recombinant antigen called NIE derived from Strongyloides stercoralis L3-stage larvae. Assay performance was tested using retrospectively collected sera from patients with parasitologically confirmed strongyloidiasis and control sera from healthy individuals or those with other parasitoses including schistosomiasis, trichinosis, echinococcosis or amebiasis who were seronegative using the NIE ELISA assay. If we consider the control group as the true negative group, the assay readily differentiated S. stercoralis-infected patients from controls detecting 96.3% of the positive cases, and with no cross reactivity observed in the control group These results were in excellent agreement (κ = 0.98) with results obtained by an NIE-based enzyme-linked immunosorbent assay (ELISA). A further 44 sera from patients with suspected S. stercoralis infection were analyzed and showed 91% agreement with the NIE ELISA. CONCLUSIONS/SIGNIFICANCE: In summary, this test provides high sensitivity detection of serum IgG against the NIE Strongyloides antigen. The assay is easy to perform and provides results in less than 30 minutes, making this platform amenable to rapid near-patient screening with minimal technical expertise
Chagas Disease in the New York City Metropolitan Area
Background
Chagas disease, caused by the parasite Trypanosoma cruzi, once considered a disease confined to Mexico, Central America, and South America, is now an emerging global public health problem. An estimated 300 000 immigrants in the United States are chronically infected with T. cruzi. However, awareness of Chagas disease among the medical community in the United States is poor.
Methods
We review our experience managing 60 patients with Chagas disease in hospitals throughout the New York City metropolitan area and describe screening, clinical manifestations, EKG findings, imaging, and treatment.
Results
The most common country of origin of our patients was El Salvador (n = 24, 40%), and the most common detection method was by routine blood donor screening (n = 21, 35%). Nearly half of the patients were asymptomatic (n = 29, 48%). Twenty-seven patients were treated with either benznidazole or nifurtimox, of whom 7 did not complete therapy due to side effects or were lost to follow-up. Ten patients had advanced heart failure requiring device implantation or organ transplantation.
Conclusions
Based on our experience, we recommend that targeted screening be used to identify at-risk, asymptomatic patients before progression to clinical disease. Evaluation should include an electrocardiogram, echocardiogram, and chest x-ray, as well as gastrointestinal imaging if relevant symptoms are present. Patients should be treated if appropriate, but providers should be aware of adverse effects that may prevent patients from completing treatment
- …