285 research outputs found

    An Evaluation of Three Drift Reduction Adjuvants for Aerial Application of Pesticides

    Get PDF
    Preventing pesticide drift from aerial applications is important for environmental and application efficiency reasons. Proper analysis of drift reduction technologies or techniques is an essential component of the drift prevention process. In the current study, three drift reduction adjuvants were tested with two herbicides under several application conditions used by rotary-wing and fixed-wing aircraft in the U.S. Data was collected using a high speed wind tunnel and laser diffraction equipment. The results of the study indicated application conditions, and not adjuvant inclusion, were the largest drivers of the droplet size distribution and drift potential. Data was further computed in the drift prediction program, AGDISP, where little differences were observed between the treatments. This study highlighted the importance of testing drift reduction technologies or techniques from multiple viewpoints

    Modelling the functional connectivity of landscapes for greater horseshoe bats Rhinolophus ferrumequinum at a local scale

    Get PDF
    Context: The importance of habitat connectivity for wildlife is widely recognised. However, assessing the movement of species tends to rely on radio-tracking or GPS evidence, which is difficult and costly to gather. Objectives: To examine functional connectivity of greater horseshoe bats (GHS, Rhinolophus ferrumequinum) at a local scale using Circuitscape software; comparing our results against expert opinion ‘fly ways’. Methods: Expert opinions were used to rank and score five environmental layers influencing GHS movement, generating resistance scores. The slope and resistance scores of these layers were varied, and validated against independent ground truthed GHS activity data, until a unimodal peak in correlation was identified for each layer. The layers were combined into a multivariate model and re-evaluated. Radiotracking studies were used to further validate the model, and the transferability was tested at other roost locations. Results: Functional connectivity models could be created using bat activity data. Models had the ability to be transferred between roost locations, although site-specific validation is strongly recommended. For all other bat species recorded, markedly more (125%) bat passes occurred in the top quartile of functional connectivity compared to any of the lower three quartiles. Conclusion: The model predictions identify areas of key conservation importance to habitat connectivity for GHS that are not recognised by expert opinion. By highlighting landscape features that act as barriers to movement, this approach can be used by decision-makers as a tool to inform local management strategies

    The Shape of Gravity in a Warped Deformed Conifold

    Full text link
    We study the spectrum of the gravitational modes in Minkowski spacetime due to a 6-dimensional warped deformed conifold, i.e., a warped throat, in superstring theory. After identifying the zero mode as the usual 4D graviton, we present the KK spectrum as well as other excitation modes. Gluing the throat to the bulk (a realistic scenario), we see that the graviton has a rather uniform probability distribution everywhere while a KK mode is peaked in the throat, as expected. Due to the suppressed measure of the throat in the wave function normalization, we find that a KK mode's probability in the bulk can be comparable to that of the graviton mode. We also present the tunneling probabilities of a KK mode from the inflationary throat to the bulk and to another throat. Due to resonance effect, the latter may not be suppressed as natively expected. Implication of this property to reheating after brane inflation is discussed

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Cosmological Constant, Gauge Hierarchy and Warped Geometry

    Get PDF
    It is suggested that the mechanism responsible for the resolution of the gauge hierarchy problem within the warped geometry framework can be generalized to provide a new explanation of the extremely tiny vacuum energy density rho_V suggested by recent observations. We illustrate the mechanism with some 5D examples in which the true vacuum energy is assumed to vanish, and rho_V is associated with a false vacuum energy such that rho_V^{1/4} ~ TeV^2/M_{Pl} ~ 10^{-3} eV, where M_{Pl} denotes the reduced Planck mass. We also consider a quintessence-like solution to the dark energy problem.Comment: 10 pages, LaTeX, 2 figures, section on quantum corrections added, version to appear in Phys. Rev.

    Rolling Tachyon in Brane World Cosmology from Superstring Field Theory

    Get PDF
    The pressureless tachyonic matter recently found in superstring field theory has an over-abundance problem in cosmology. We argue that this problem is naturally solved in the brane inflationary scenario if almost all of the tachyon energy is drained (via its coupling to the inflaton and matter fields) to heating the universe, while the rest of the tachyon energy goes to a network of cosmic strings (lower-dimensional BPS D-branes) produced during the tachyon rolling at the end of inflation.Comment: 4 pages, one figure. This version quantifies constraints on various phenomenological models for tachyon deca

    An Improved Brane Anti-Brane Action from Boundary Superstring Field Theory and Multi-Vortex Solutions

    Get PDF
    We present an improved effective action for the D-brane-anti-D-brane system obtained from boundary superstring field theory. Although the action looks highly non-trivial, it has simple explicit multi-vortex (i.e. codimension-2 multi-BPS D-brane) multi-anti-vortex solutions. The solutions have a curious degeneracy corresponding to different ``magnetic'' fluxes at the core of each vortex. We also generalize the brane anti-brane effective action that is suitable for the study of the inflationary scenario and the production of defects in the early universe. We show that when a brane and anti-brane are distantly separated, although the system is classically stable it can decay via quantum tunneling through the barrier.Comment: 24 pages, 1 figure, JHEP3.cls; v2: references added, tunneling rate discussion expande

    An Inflationary Scenario in Intersecting Brane Models

    Get PDF
    We propose a new scenario for D-term inflation which appears quite straightforwardly in the open string sector of intersecting brane models. We take the inflaton to be a chiral field in a bifundamental representation of the hidden sector and we argue that a sufficiently flat potential can be brane engineered. This type of model generically predicts a near gaussian red spectrum with negligible tensor modes. We note that this model can very naturally generate a baryon asymmetry at the end of inflation via the recently proposed hidden sector baryogenesis mechanism. We also discuss the possibility that Majorana masses for the neutrinos can be simultaneously generated by the tachyon condensation which ends inflation. Our proposed scenario is viable for both high and low scale supersymmetry breaking.Comment: 30 pages, 2 figures; v2 references and comments adde

    Spectral flow and boundary string field theory for angled D-branes

    Full text link
    D-branes intersecting at an arbitrary fixed angle generically constitute a configuration unstable toward recombination. The reconnection of the branes nucleates at the intersection point and involves a generalization of the process of brane decay of interest to non-perturbative string dynamics as well as cosmology. After reviewing the string spectrum of systems of angled branes, we show that worldsheet twist superfields may be used in the context of Boundary Superstring Field Theory to describe the dynamics. Changing the angle between the branes is seen from the worldsheet as spectral flow with boundary insertions flowing from bosonic to fermionic operators. We calculate the complete tachyon potential and the low energy effective action as a function of angle and find an expression that interpolates between the brane-antibrane and the Dirac-Born-Infeld actions. The potential captures the mechanism of D-brane recombination and provides for interesting new physics for tachyon decay.Comment: 32 pages, 9 figures; v2 references added; v3 discussion clarifie
    • 

    corecore