774 research outputs found

    Cartilage repair in osteoarthritic patients: utopia or real opportunity?

    Get PDF
    As medical advances lengthen average life expectancy, osteoarthritis (OA) will become a larger public health problem - not only because it is a manifestation of aging but also because it usually takes many years to reach clinical relevance. OA is already one of the ten most disabling diseases in industrialized countries. The huge financial burden emphasizes the acute need for new and more effective treatments for articular cartilage defects, especially since there are few disease modifying drugs or treatments for OA. There is no cure for OA and the management of OA is largely palliative, focusing on the alleviation of symptoms. Recent longitudinal non-controlled trials suggest that autologous chondrocyte transplantation techniques, which are indicated for young people with traumatic cartilage defects, could also be used in degenerative defects of elderly people with OA. This report discusses this therapeutic opportunity in view of some recently published data

    Application for Proteomic Techniques in Studying Osteoarthritis: A Review

    Get PDF
    After the genomic era, proteomic corresponds to a wide variety of techniques that study the protein content of cells, tissue, or organism and that allow the isolation of protein of interest. It offers the choice between gel-based and gel-free methods or shotgun proteomics. Applications of proteomic technology may concern three principal objectives in several biomedical or clinical domains of research as in osteoarthritis: (i) to understand the physiopathology or underlying mechanisms leading to a disease or associated with a particular model, (ii), to find disease-specific biomarker, and (iii) to identify new therapeutic targets. This review aimed at gathering most of the data regarding the proteomic techniques and their applications to osteoarthritis research. It also reported technical limitations and solutions, as for example for sample preparation. Proteomics open wide perspectives in biochemical research but many technical matters still remain to be solved

    Muscle: a source of progenitor cells for bone fracture healing

    Get PDF
    Bone repair failure is a major complication of open fracture, leading to non-union of broken bone extremities and movement at the fracture site. This results in a serious disability for patients. The role played by the periosteum and bone marrow progenitors in bone repair is now well documented. In contrast, limited information is available on the role played by myogenic progenitor cells in bone repair. In a recent article published in BMC Musculoskeletal Disorders, Liu et al. compared the presence of myogenic progenitor (MyoD lineage cells) in closed and open fractures. They showed that myogenic progenitors are present in open, but not closed fractures, suggesting that muscle satellite cells may colonize the fracture site in the absence of intact periosteum. Interestingly, these progenitors sequentially expressed a chondrogenic and, thereafter, an osteoblastic phenotype, suggestive of a functional role in the repair process. This finding opens up new perspectives for the research of orthopedic surgical methods, which could maximize myogenic progenitor access and mobilization to augment bone repair
    corecore