2,078 research outputs found

    Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure

    Full text link
    Bundles of many fibers, with statistically distributed thresholds for breakdown of individual fibers and where the load carried by a bursting fiber is equally distributed among the surviving members, are considered. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, with a distribution D(Delta) of the magnitude Delta of such avalanches. We show that there is, for certain threshold distributions, a crossover behavior of D(Delta) between two power laws D(Delta) proportional to Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic behavior, and we give the condition for which the D(Delta) proportional to Delta^(-3/2) behavior is seen. This crossover is a signal of imminent catastrophic failure in the fiber bundle. We find the same crossover behavior in the fuse model.Comment: 4 pages, 4 figure

    Lagekostenbedrijf behaalt laag vervangingspercentage

    Get PDF
    In de praktijk blijkt de veevervanging op het Lagekostenbedrijf de nodige knelpunten op te leveren

    Fast-Light in a Photorefractive Crystal for Gravitational Wave Detection

    Get PDF
    We demonstrate superluminal light propagation using two frequency multiplexed pump beams to produce a gain doublet in a photorefractive crystal of Ce:BaTiO3. The two gain lines are obtained by two-wave mixing between a probe field and two individual pump fields. The angular frequencies of the pumps are symmetrically tuned from the frequency of the probe. The frequency difference between the pumps corresponds to the separation of the two gain lines; as it increases, the crystal gradually converts from normal dispersion without detuning to an anomalously dispersive medium. The time advance is measured as 0.28 sec for a pulse propagating through a medium with a 2Hz gain separation, compared to the same pulse propagating through empty space. We also demonstrate directly anomalous dispersion profile using a modfied experimental configuration. Finally, we discuss how anomalous dispersion produced this way in a faster photorefractive crystal (such as SPS: Sn2P2S6) could be employed to enhance the sensitivity-bandwidth product of a LIGO type gravitational wave detector augmented by a White Light Cavity.Comment: 14 pages, 5 figure

    Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power

    Get PDF
    The performance of KNbO3, MgO:PPLN and KTA were experimentally compared for broadband mid-wave infrared parametric amplification at high repetition rate. The seed pulses with an energy of 6.5 μJ were amplified using 410 μJ of pump at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study, revealed average power induced processes which limit the scaling of optical parametric amplification: in MgO:PPLN the pump peak intensity was limited to 3.8 GW/cm2 due to non-permanent beam reshaping while in KNbO3 an absorptioninduced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4 GW/cm2Peer ReviewedPostprint (author's final draft

    The resonance spectrum of the cusp map in the space of analytic functions

    Full text link
    We prove that the Frobenius--Perron operator UU of the cusp map F:[−1,1]→[−1,1]F:[-1,1]\to[-1,1], F(x)=1−2∣x∣F(x)=1-2\sqrt{|x|} (which is an approximation of the Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any q∈(0,1)q\in(0,1) the spectrum of UU in the Hardy space in the disk \{z\in\C:|z-q|<1+q\} is the union of the segment [0,1][0,1] and some finite or countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy spaces is adde

    Discrete Fracture Model with Anisotropic Load Sharing

    Full text link
    A two-dimensional fracture model where the interaction among elements is modeled by an anisotropic stress-transfer function is presented. The influence of anisotropy on the macroscopic properties of the samples is clarified, by interpolating between several limiting cases of load sharing. Furthermore, the critical stress and the distribution of failure avalanches are obtained numerically for different values of the anisotropy parameter α\alpha and as a function of the interaction exponent γ\gamma. From numerical results, one can certainly conclude that the anisotropy does not change the crossover point γc=2\gamma_c=2 in 2D. Hence, in the limit of infinite system size, the crossover value γc=2\gamma_c=2 between local and global load sharing is the same as the one obtained in the isotropic case. In the case of finite systems, however, for γ≤2\gamma\le2, the global load sharing behavior is approached very slowly

    Phase transition in the modified fiber bundle model

    Full text link
    We extend the standard fiber bundle model (FBM) with the local load sharing in such a way that the conservation of the total load is relaxed when an isolated fiber is broken. In this modified FBM in one dimension (1D), it is revealed that the model exhibits a well-defined phase transition at a finite nonzero value of the load, which is in contrast to the standard 1D FBM. The modified FBM defined in the Watts-Strogatz network is also investigated, and found is the existences of two distinct transitions: one discontinuous and the other continuous. The effects of the long-range shortcuts are also discussed.Comment: 7 pages, to appear in Europhys. Let
    • …
    corecore