505 research outputs found
Mouse Models as Resources for Studying Infectious Diseases
Mouse models are important tools both for studying the pathogenesis of infectious diseases and for the preclinical evaluation of vaccines and therapies against a wide variety of human pathogens. The use of genetically defined inbred mouse strains, humanized mice, and gene knockout mice has allowed the research community to explore how pathogens cause disease, define the role of specific host genes in either controlling or promoting disease, and identify potential targets for the prevention or treatment of a wide range of infectious agents. This review discusses several of the most commonly used mouse model systems, as well as new resources such as the Collaborative Cross as models for studying infectious diseases
Genetic control of alphavirus pathogenesis
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the immune response being found in particular to majorly influence the outcome. This review describes the current knowledge of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility and clinical outcome
SARS coronavirus and innate immunity
The emergence of the highly pathogenic SARS coronavirus (SARS-CoV) has reignited interest in coronavirus biology and pathogenesis. An emerging theme in coronavirus pathogenesis is that the interaction between specific viral genes and the host immune system, specifically the innate immune system, functions as a key determinant in regulating virulence and disease outcomes. Using SARS-CoV as a model, we will review the current knowledge of the interplay between coronavirus infection and the host innate immune system in vivo, and then discuss the mechanisms by which specific gene products antagonize the host innate immune response in cell culture models. Our data suggests that the SARS-CoV uses specific strategies to evade and antagonize the sensing and signaling arms of the interferon pathway. We summarize by identifying future points of consideration that will contribute greatly to our understanding of the molecular mechanisms governing coronavirus pathogenesis and virulence, and the development of severe disease in humans and animals
Murine cytomegalovirus inhibits interferon γ-induced antigen presentation to CD4 T cells by macrophages via regulation of expression of major histocompatibility complex class II-associated genes
CD4 T cells and interferon γ (IFN-γ) are required for clearance of murine cytomegalovirus (MCMV) infection from the salivary gland in a process taking weeks to months. To explain the inefficiency of salivary gland clearance we hypothesized that MCMV interferes with IFN-γ induced antigen presentation to CD4 T cells. MCMV infection inhibited IFN-γ-induced presentation of major histocompatibility complex (MHC) class II associated peptide antigen by differentiated bone marrow macrophages (BMMΦs) to a T cell hybridoma via impairment of MHC class II cell surface expression. This effect was independent of IFN-α/β induction by MCMV infection, and required direct infection of the BMMΦs with live virus. Inhibition of MHC class II cell surface expression was associated with a six- to eighffold reduction in IFN-γ induced IAb mRNA levels, and comparable decreases in IFN-γ induced expression of invariant chain (Ii), H-2Ma, and H-2Mb mRNAs. Steady state levels of several constitutive host mRNAs, including β-actin, cyclophilin, and CD45 were not significantly decreased by MCMV infection, ruling out a general effect of MCMV infection on mRNA levels. MCMV effects were specific to certain MHC genes since IFN-γ-induced transporter associated with antigen presentation (TAP)2 mRNA levels were minimally altered in infected cells. Analysis of early upstream events in the IFN-γ signaling pathway revealed that MCMV did not affect activation and nuclear translocation of STAT1α, and had minor effects on the early induction of IRF-1 mRNA and protein. We conclude that MCMV infection interferes with IFN-γ-mediated induction of specific MHC genes and the Ii at a stage subsequent to STAT1α activation and nuclear translocation. This impairs antigen presentation to CD4 T cells, and may contribute to the capacity of MCMV to spread and persist within the infected host
The Collaborative Cross: A Systems Genetics Resource for Studying Host-Pathogen Interactions
Host genetic variation plays an important role in shaping infectious disease susceptibility. Noll et al. review the application of a genetically diverse mouse reference population, the Collaborative Cross, to study variation in disease response across multiple pathogens, highlighting advances in model development and genetic mapping. © 2019 Elsevier Inc.Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resistance genes, largely aided by mouse models, has significantly advanced our understanding of infectious disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic reference population, serves as a tractable model system to study how pathogens interact with genetically diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop improved models of pathogen-induced disease and to map polymorphic host response loci associated with variation in susceptibility to pathogens
Development and characterization of a Rift Valley fever virus cell–cell fusion assay using alphavirus replicon vectors
AbstractRift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell–cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by β-galactosidase α-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell–cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell–cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion
Modulation of Cellular Tropism and Innate Antiviral Response by Viral Glycans
Arthropod-borne viruses (arboviruses) are a significant cause of human and animal disease worldwide. Multiple interactions between virus and the host innate immune system ultimately determine the pathogenesis and clinical outcome of the infection. Evidence is rapidly emerging that suggests viral glycans play a key role in viral pathogenesis by regulating host cell tropism and interactions with the host innate immune response. Glycan-mediated interactions are especially important for arboviruses which must adapt to variable glycosylation systems and cellular receptors within both vertebrate and invertebrate hosts. This review focuses on emerging evidence which supports a crucial role for viral glycans in mediating host cell tropism and regulating the innate antiviral response
Mannose binding lectin is required for alphavirus-induced arthritis/myositis
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3(-/-) mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.This work was supported by NIH/NIAMS R01 AR 047190 awarded to MTH
Vaccine-induced skewing of T cell responses protects against Chikungunya virus disease
Chikungunya virus (CHIKV) infections can cause severe and debilitating joint and muscular pain that can be long lasting. Current CHIKV vaccines under development rely on the generation of neutralizing antibodies for protection; however, the role of T cells in controlling CHIKV infection and disease is still unclear. Using an overlapping peptide library, we identified the CHIKV-specific T cell receptor epitopes recognized in C57BL/6 infected mice at 7 and 14 days post-infection. A fusion protein containing peptides 451, 416, a small region of nsP4, peptide 47, and an HA tag (CHKVf5) was expressed using adenovirus and cytomegalovirus-vectored vaccines. Mice vaccinated with CHKVf5 elicited robust T cell responses to higher levels than normally observed following CHIKV infection, but the vaccine vectors did not elicit neutralizing antibodies. CHKVf5-vaccinated mice had significantly reduced infectious viral load when challenged by intramuscular CHIKV injection. Depletion of both CD
Glycosylation of Mouse DPP4 Plays a Role in Inhibiting Middle East Respiratory Syndrome Coronavirus Infection
Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development
- …