10,764 research outputs found
Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride
The complexity of the valence band structure in p-type PbTe has been shown to enable a significant enhancement of the average thermoelectric figure of merit (zT) when heavily doped with Na. It has also been shown that when PbTe is nanostructured with large nanometer sized Ag_2Te precipitates there is an enhancement of zT due to phonon scattering at the interfaces. The enhancement in zT resulting from these two mechanisms is of similar magnitude but, in principle, decoupled from one another. This work experimentally demonstrates a successful combination of the complexity in the valence band structure with the addition of nanostructuring to create a high performance thermoelectric material. These effects lead to a high zT over a wide temperature range with peak zT > 1.5 at T > 650 K in Na-doped PbTe/Ag_2Te. This high average zT produces 30% higher efficiency (300–750 K) than pure Na-doped PbTe because of the nanostructures, while the complex valence band structure leads to twice the efficiency as the related n-type La-doped PbTe/Ag_2Te without such band structure complexity
Optimal entanglement criterion for mixed quantum states
We develop a strong and computationally simple entanglement criterion. The
criterion is based on an elementary positive map Phi which operates on state
spaces with even dimension N >= 4. It is shown that Phi detects many entangled
states with positive partial transposition (PPT) and that it leads to a class
of optimal entanglement witnesses. This implies that there are no other
witnesses which can detect more entangled PPT states. The map Phi yields a
systematic method for the explicit construction of high-dimensional manifolds
of bound entangled states.Comment: 4 pages, no figures, replaced by published version (minor changes),
Journal-reference adde
Production of exotic isotopes in complete fusion reactions with radioactive beams
The isotopic dependence of the complete fusion (capture) cross section is
analyzed in the reactions
Xe+Ca with stable and
radioactive beams. It is shown for the first time that the very neutron-rich
nuclei W can be reached with relatively large cross sections by
complete fusion reactions with radioactive ion beams at incident energies near
the Coulomb barrier. A comparison between the complete fusion and fragmentation
reactions for the production of neutron-rich W and neutron-deficient Rn
isotopes is performed.Comment: 13 pages, 6 figures, accepted in PR
Heating the bubbly gas of galaxy clusters with weak shocks and sound waves
Using hydrodynamic simulations and a technique to extract the rotational
component of the velocity field, we show how bubbles of relativistic gas
inflated by AGN jets in galaxy clusters act as a catalyst, transforming the
energy carried by sound and shock waves to heat. The energy is stored in a
vortex field around the bubbles which can subsequently be dissipated. The
efficiency of this process is set mainly by the fraction of the cluster volume
filled by (sub-)kpc scale filaments and bubbles of relativistic plasma.Comment: Accepted for publication in ApJ Letters after minor wording changes,
4 figures, 4 page
Parametric Feedback Resonance in Chaotic Systems
If one changes the control parameter of a chaotic system proportionally to the distance between an arbitrary point on the strange attractor and the actual trajectory, the lifetime Ï„ of the most stable unstable periodic orbit in the vicinity of this point starts to diverge with a power law. The volume in parameter space where Ï„ becomes infinite is finite and from its nonfractal boundaries one can determine directly the local Liapunov exponents. The experimental applicability of the method is demonstrated for two coupled diode resonators
Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer, that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow of information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit
Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element
The yields of evaporation residues, fusion-fission and quasifission fragments
in the Ca+Sm and O+W reactions are analyzed
in the framework of the combined theoretical method based on the dinuclear
system concept and advanced statistical model. The measured yields of
evaporation residues for the Ca+Sm reaction can be well
reproduced. The measured yields of fission fragments are decomposed into
contributions coming from fusion-fission, quasifission, and fast-fission. The
decrease in the measured yield of quasifission fragments in
Ca+Sm at the large collision energies and the lack of
quasifission fragments in the Ca+Sm reaction are explained by
the overlap in mass-angle distributions of the quasifission and fusion-fission
fragments. The investigation of the optimal conditions for the synthesis of the
new element =120 (=302) show that the Cr+Cm reaction is
preferable in comparison with the Fe+Pu and Ni+U
reactions because the excitation function of the evaporation residues of the
former reaction is some orders of magnitude larger than that for the last two
reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.
Lattice Gauge Description of Colliding Nuclei
We propose a novel formalism for simultaneously describing both, the hard and
soft parton dynamics in ultrarelativistic collisions of nuclei. The emission of
gluons from the initially coherent parton configurations of the colliding
nuclei and low- color coherence effects are treated in the framework of a
Yang-Mills transport equation on a coupled lattice-particle system. A collision
term is added to the transport equation to account for the remaining
intermediate and high- interactions in an infrared finite manner.Comment: 8 page
Energy and momentum deposited into a QCD medium by a jet shower
Hard partons moving through a dense QCD medium lose energy by radiative
emissions and elastic scatterings. Deposition of the radiative contribution
into the medium requires rescattering of the radiated gluons. We compute the
total energy loss and its deposition into the medium self-consistently within
the same formalism, assuming perturbative interaction between probe and medium.
The same transport coefficients that control energy loss of the hard parton
determine how the energy is deposited into the medium; this allows a parameter
free calculation of the latter once the former have been computed or extracted
from experimental energy loss data. We compute them for a perturbative medium
in hard thermal loop (HTL) approximation. Assuming that the deposited
energy-momentum is equilibrated after a short relaxation time, we compute the
medium's hydrodynamical response and obtain a conical pattern that is strongly
enhanced by showering.Comment: 4 pages, 3 figures, revtex4, intro modified, typos correcte
Stability of atoms and molecules in an ultrarelativistic Thomas-Fermi-Weizsaecker model
We consider the zero mass limit of a relativistic Thomas-Fermi-Weizsaecker
model of atoms and molecules. We find bounds for the critical nuclear charges
that ensure stability.Comment: 8 pages, LaTe
- …