19 research outputs found

    Spectral Analysis of Signal Averaging Electrocardiography in Atrial and Ventricular Tachycardia Arrhythmias

    No full text
    Targeting complex fractionated atrial electrocardiograms by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies and catheter ablation of atrial fibrillation and ventricular tachycardia. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique. Methods: Signal averaging electrocardigraphy allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm use automatic ECG trigger function for signal averaged transthoracic, transesophageal and intra-cardiac ECG signals with novel LabVIEW software. Results: The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. We evaluated atrial flutter in the time domain with two-to-one atrioventricular conduction, 212.0 ± 4.1 ms atrial cycle length, 426.0 ± 8.2 ms ventricular cycle length, 58.2 ± 1.8 ms P-wave duration, 119.6 ± 6.4 ms PQ duration, 103.0 ± 2.4 ms QRS duration and 296.4 ± 6.8 ms QT duration. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex. Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can be utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial and ventricular electrocardiograms may be useful parameters to evaluate electrical cardiac bradycardia and tachycardia signals in atrial fibrillation and ventricular tachycardia ablation

    Herzrhythmusmodell zur Simulation elektrischer und thermischer Felder bei kardialer Resynchronisationstherapie und Hochfrequenz-Ablation

    No full text
    Hintergrund: Richtung und Stärke des elektrischen Feldes (E-Feld) der biventrikulären (BV) Stimulation und elektrische interventrikuläre Desynchronisation sind bei Patienten mit Herzinsuffizienz und verbreitertem QRS Komplex von Bedeutung für den Erfolg der kardialen Resynchronisationstherapie (CRT). Das 3D Herzrhythmusmodell (HRM) ermöglicht die Simulation von CRT und Hochfrequenz (HF) Ablation. Das Ziel der Studie besteht in der Integration von Schrittmacher- und Ablationselektroden in das HRM zur E-Feld Simulation der BV Stimulation und thermischen Feld (T-Feld) Simulation der HF Ablation von Vorhofflimmern (AF). Methoden: Es wurden fünf multipolare linksventrikuläre (LV) Elektroden, eine epikardiale LV Elektrode, vier bipolare rechtsatriale (RA) Elektroden, zwei rechtsventrikuläre (RV) Elektroden und ein HF Ablationskatheter mit CST (Computer Simulation Technology, Darmstadt) modelliert und das HRM (Schalk et al: Clin Res Cardiol 106, Suppl 1, April 2017, P1812) um den Koronarvenensinus (CS) erweitert (HRM-CS). E-Feld Simulationen bei vorhofsynchroner BV Stimulation und bei RA Stimulation mit RV und LV Ableitung erfolgten mit den Elektroden Select Secure 3830, Capsure VDD-2 5038 und Attain OTW 4194 im HRM+CS (Fig.). F-Feld Simulationen der HF Ablation von AF bei CRT wurden mit integriertem Ablationskatheter AlCath G FullCircle (Biotronik) simuliert. Ergebnisse: HRM-CS ermöglichte 3D E-Feld Simulationen bei vorhofsynchroner bipolarer BV Stimulation und bei bipolarer RA Stimulation mit bipolarer RV und LV Ableitung. RV und LV Stimulation erfolgten zeitgleich bei einer Amplitude von 3 V an der LV Elektrode und 1 V an der RV Elektrode mit einer Impulsbreite von jeweils 0,5 ms. Die von der BV Stimulationen erzeugten Fernpotentiale konnten von der RA Elektrode wahrgenommen werden. Das Fernpotential an der RA Elektrodenspitze betrug 32,86 mV und in 1 mm Abstand von der RA Elektrodenspitze ergab sich ein Fernpotential von 185,97 mV. HRM-CS ermöglichte 3D T-Feld Simulationen der HF Ablation von AF bei CRT. Das T-Feld bei HF Ablation des AV-Knotens wurde mit einer anliegenden Leistung von 5 W bei 420 kHz an der distalen 8 mm Ablationselektrode simuliert. Die Temperatur an der Katheterspitze betrug nach 5 s Ablationsdauer 88,66 °C, in 1 mm Abstand von der Katheterspitze im Myokard 42,17 °C und in 2 mm Abstand 37,49 °C. Schlussfolgerungen: HRM-CS und Elektrodenmodelle ermöglichen die 3D Simulationen von E-Feldern bei vorhofsynchroner BV Stimulation, RA Stimulation mit RV und LV Wahrnehmung und von T-Feldern bei HF Ablation. E-Feld Simulationen von RA, RV und LV Stimulation und Sensing können möglicherweise zur Vorhersage von CRT Respondern genutzt werden

    Ösophaguselektrodensonde und Vorrichtung zur kardiologischen Behandlung und/oder Diagnose (DE102017010318B3)

    No full text
    Die Erfindung betrifft eine Ösophaguselektrodensonde bzw. einen Ösophaguskatheter 10 zur Bioimpedanzmessung und/oder zur Neurostimulation, eine Vorrichtung 100 zur transösophagealen kardiologischen Behandlung und/oder kardiologischen Diagnose und ein Verfahren zum Steuern oder Regeln einer Ablationseinrichtung zum Durchführen einer Herzablation. Die Ösophaguselektrodensonde 10 umfasst eine Bioimpedanzmesseinrichtung zur Messung der Bioimpedanz von zumindest einem Teil des die Ösophaguselektrodensonde 10 umgebenden Gewebes. Die Bioimpedanzmesseinrichtung umfasst mindestens eine erste Elektrode 12A und mindestens eine zweite Elektrode 12B, wobei die mindestens eine erste Elektrode 12A auf einer dem Herzen zugewandten Seite 14 der Ösophaguselektrodensonde 10 angeordnet ist, und die mindestens eine zweite Elektrode 12B auf einer vom Herzen abgewandten Seite 16 der Ösophaguselektrodensonde 10 angeordnet ist.Die Vorrichtung 100 umfasst die Ösophaguselektrodensonde 10 und eine Steuer- und/oder Auswerteinrichtung 30. Die Steuer- und/oder Auswerteinrichtung 30 ist eingerichtet, ein erstes Bioimpedanzmesssignal von der mindestens einen ersten Elektrode 12A und ein zweites Bioimpedanzmesssignal von der mindestens einen zweiten Elektrode 12B zu empfangen und zu vergleichen, und ein Kontrollsignal auf Basis des Vergleichs zu generieren. Das Kontrollsignal kann ein Signal zum Steuern oder Regeln einer Ablationseinrichtung zum Durchführen einer Herzablation sein

    Kryoablation von Vorhofflimmern

    No full text
    Die Pulmonalvenenisolation (PVI) mithilfe von Kryoballonkathetern ist eine anerkannte Methode zur Behandlung von Vorhofflimmern (AF). Diese Methode bietet eine kürzere Behandlungsdauer als die klassische Therapie durch die Hochfrequenz- (HF) Ablation. Ziel dieser Studie war es, verschie-dene Kryoballonkatheter, HF-Ablationskatheter und Ösophaguskatheter in ein Herzrhythmusmodell zu integrieren und mit statischer und dynamischer Simulation elektrische und thermische Felder bei PVI unter Vorhofflimmern zu untersuchen.Pulmonary vein isolation (PVI) using cryoballoon catheters are a recognized method for the tre-atment of atrial fibrillation (AF). This method offers shorter treatment duration in contrast to the classical therapy with high-frequency (HF) ablation. The aim of this study was to integrate different cryoballoon catheters and a HF catheter into a heart rhythm model and to compare them by means of static and dynamic electromagnetic and thermal simulation in use under AF

    Nicht-invasive Evaluierung des elektrischen interventrikulären Delays bei Vorhofflimmern mit und ohne kardiale Resynchronisationstherapie

    No full text
    Hintergrund: Das elektrische interventrikuläre Delay (IVD) und die Lage der linksventrikulären (LV) Elektrode zum Ort der spätesten LV Erregung sind bei Patienten (P) mit Herzinsuffizienz (HF), reduzierter LV Funktion und breiter QRS Dauer (QRSD) von Bedeutung für den Erfolg der kardialen Resynchronisationstherapie (CRT). Die LV Elektrokardiographie ermöglicht eine Abschätzung des elektrischen IVD. Ziel der Studie besteht in der nicht-invasiven Evaluierung des elektrischen IVD bei Patienten (P) mit Vorhofflimmern (AFib) mit und ohne CRT mit biventrikulärer (BV) Stimulation. Methoden: Bei 49 HF P mit AFib (Alter 63,9 ± 10,8 Jahre; 43 Männer und 6 Frauen) mit New York Heart Association (NYHA) Klasse 2,9 ± 0,4, LV Ejektionsfraktion 26,03 ± 7,99 % und QRS-Dauer (QRSD) 143,69 ± 35,62 ms wurde das elektrische IVD als Intervall zwischen Beginn des QRS-Komplexes im Oberflächen EKG und Beginn des LV Signals im transösophagealen LV EKG bei 31 HF P mit AFib und bei 18 HF P mit AFib und CRT präoperativ bestimmt. Das fokussierte bipolare LV EKG wurde mittels Osypka TO Sonde mit halbkugelförmigen Elektroden in Höhe des maximalen LV Signals registriert. Ergebnisse: Bei 31 HF P mit AFib betrugen QRSD 135,48 ± 38,78 ms, IVD 49,55 ± 26,38 ms, QRSD-IVD-Verhältnis 3,12 ± 1,11 und das IVD korrelierte mit der QRSD (r=0,75, P<0,001) und dem QRSD-IVD-Verhältnis (r=-0,67, P<0,001) (Fig.). Bei 18 HF P mit AFib und CRT Defibrillator betrugen QRSD 157,83 ± 24,38 ms, IVD 61,94 ± 26,88 ms, QRSD-IVD-Verhältnis 3,12 ± 1,89 und das IVD korrelierte mit der QRSD (r=0,47, P=0,049) und dem QRSD-IVD-Verhältnis (r=-0,73, P<0,001). Bei 72,2 % CRT Responder (R) (n=13) betrugen QRSD 158,15 ± 22,4 ms, IVD 64,23 ± 24,62 ms, QRSD-IVD-Verhältnis 2,82 ± 1,32 und das IVD korrelierte mit der QRSD (r=0,57, P=0,043) und dem QRSD-IVD-Verhältnis (r=-0,76, P=0,0024). Bei 27,8 % CRT Non-Responder (NR) (n=5) betrugen QRSD 157 ± 31,94 ms, IVD 56 ± 34,52 ms, QRSD-IVD-Verhältnis 3,88 ± 2,98 und das IVD korrelierte nicht mit der QRSD (r=0,33, P=0,591) und dem QRSD-IVD-Verhältnis (r=-0,732, P=0,159). Die CRT R verbesserten sich in der NYHA Klasse von 3 ± 0,2 auf 2,2 ± 0,3 (P<0,001) während 15,3 ± 13,1 Monaten BV Stimulation. Bei 15 CRT NR kam es zu keiner Verbesserung der NYHA Klasse von 3 auf 3,3 ± 0,97 (P=0,529) während 18,8 ± 20,7 Monaten BV Stimulation. Schlussfolgerungen: Das transösophageale LV EKG ermöglicht bei HF-P mit AFib die nichtinvasive Messung des elektrischen IVD präoperativ vor CRT. IVD und QRSD-IVD-Verhältnis sind möglicherweise einfach anwendbare Parameter zur Vorhersage von CRT R und CRT NR bei P mit AFib

    Interventricular delay and left ventricular delay in right ventricular pacemaker pacing before upgrading to biventricular pacing

    No full text
    Background: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients (P) with sinus rhythm, reduced left ventricular (LV) ejection fraction (EF) and electrical ventricular desynchronization. The aim of the study was to evaluate electrical interventricular delay (IVD) and left ventricular delay (LVD) in right ventricular (RV) pacemaker pacing before upgrading to CRT BV pacing. Methods: HF P (n=11, age 69.0 ± 7.9 years, 1 female, 10 males) with DDD pacemaker (n=10), DDD defibrillator (n=1), RV pacing, New York Heart Association (NYHA) class 3.0 ± 0.2 and 24.5 ± 4.9 % LVEF were measured by surface ECG and transesophageal bipolar LV ECG before upgrading to CRT defibrillator (n=8) and CRT pacemaker (n=3). IVD was measured between onset of QRS in the surface ECG and onset of LV signal in the transesophageal ECG. LVD was measured between onset and offset of LV signal in the transesophageal ECG. CRT atrioventricular (AV) and BV pacing delay were optimized by impedance cardiography. Results: Interventricular and intraventricular desynchronization in RV pacemaker pacing were 228.2 ± 44.8 ms QRS duration, 86.5 ± 32.8ms IVD, 94.4 ± 23.8ms LVD, 2.6 ± 0.8 QRS-IVD-ratio with correlation between IVD and QRS-IVD-ratio (r=-0.668 P=0.0248) and 2.3 ± 0.7 QRS-LVD-ratio. The LVEF-IVD-ratio was 0.3 ± 0.1 with correlation between IVD and LVEF-IVD-ratio (r=-0.8063 P=0.00272) and with correlation between QRS duration and LVEF-IVD-ratio (r=-0.7251 P=0.01157). Optimal sensing and pacing AV delay were 128.3 ± 24.8 ms AV delay after atrial sensing (n=6) and 173.3 ± 40.4 ms AV delay after atrial pacing (n=3). Optimal BV pacing delay was -4.3 ± 11.3 ms between LV and RV pacing (n=7). During 30.4 ± 29.6 month CRT follow-up, the NYHA class improved from 3.1 ± 0.2 to 2.2 ± 0.3. Conclusions: Transesophageal electrical IVD and LVD in RV pacemaker pacing may be additional useful ventricular desynchronization parameters to improve P selection for upgrading RV pacemaker pacing to CRT BV pacing

    Electrical interventricular delay to left ventricular delay ratio in atrial fibrillation cardiac resynchronization therapy responder and non-responder

    No full text
    Background: Cardiac resynchronization therapy (CRT) is an established therapy for heart failure (HF) patients (P) with reduced left ventricular (LV) ejection fraction and electrical interventricular desynchronization, but not all P improved clinically. The aim of the study was to evaluate electrical interventricular delay (IVD) to LV delay (LVD) ratio in atrial fibrillation (AF) CRT responder (R) and non-responder (NR). Methods: AF P (n = 18, age 60.6 ± 11.4 years, 1 female, 17 males) with HF New York Heart Association (NYHA) class 3.0 ± 0.2, 25.3 ± 5.9 % LV ejection fraction and 157.8 ± 24.4 ms QRS duration (QRSD) were measured by surface ECG and focused transesophageal bipolar LV ECG before implantation of CRT pacemaker (n = 2) or CRT defibrillator (n = 16). IVD was measured between onset of QRS in the surface ECG and onset of LV signal in the LV ECG. LVD was measured between onset and offset of LV signal in the LV ECG. Results: Electrical ventricular desynchronization in AF CRT P were 61.9 ± 26.9ms IVD, 80.6 ± 24.3ms LVD, 0.85 ± 0.41 IVD-LVD-ratio (Figure), 3.12 ± 1.89 QRSD-IVD-ratio and 2.07 ± 0.47 QRSD-LVD-ratio. There were 72.2 % AF CRT R (n = 13) with 64.2 ± 24.6ms IVD and 77.8 ± 21.6ms LVD with Pearson correlation to 0.89 ± 0.39 IVD-LVD-ratio (r = 0.87, P < 0.01; r = -0.69, P < 0.01), 2.82 ± 1.32 QRSD-IVD-ratio (r = -0.76, P < 0.01; r = 0.67, P = 0.011) and 2.13 ± 0.46 QRSD-LVD-ratio (r = 0.57, P = 0.041; r = -0.85, P < 0.01). There were 27.8% AF CRT NR (n = 5) with 56.0 ± 34.5ms IVD and 87.8 ± 31.9ms LVD without correlation to 0.74 ± 0.48 IVD-LVD-ratio, 3.88 ± 2.98 QRSD-IVD-ratio and 1.90 ± 0.48 QRSD-LVD-ratio. During 15.3 ± 13.1 month CRT follow-up, the AF CRT R NYHA class improved from 3.0 ± 0.2 to 2.2 ± 0.3 (P < 0.001). During 18.8 ± 20.7 month CRT follow-up, the AF CRT NR NYHA class not improved from 3 to 3.3 ± 0.97
    corecore