3 research outputs found

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    Wearables for the Next Pandemic

    No full text
    This paper reviews the current state of the art in wearable sensors, including current challenges, that can alleviate the loads on hospitals and medical centers. During the COVID-19 Pandemic in 2020, healthcare systems were overwhelmed by people with mild to severe symptoms needing care. A careful study of pandemics and their symptoms in the past 100 years reveals common traits that should be monitored for managing the health and economic costs. Cheap, low power, and portable multi-modal-sensors that detect the common symptoms can be stockpiled and ready for the next pandemic. These sensors include temperature sensors for fever monitoring, pulse oximetry sensors for blood oxygen levels, impedance sensors for thoracic impedance, and other state sensors that can be integrated into a single system and connected to a smartphone or data center. Both research and commercial medically approved devices are reviewed with an emphasis on the electronics required to realize the sensing. The performance characteristics, such as accuracy, power, resolution, and size of each sensor modality are critically examined. A discussion of the characteristics, research challenges, and features of an ideal integrated wearable system is also presented

    Machine Learning in Chaos-Based Encryption: Theory, Implementations, and Applications

    No full text
    Chaos-based encryption is a promising approach to secure communication due to its complexity and unpredictability. However, various challenges lie in the design and implementation of efficient, low-power, attack-resistant chaos-based encryption schemes with high encryption and decryption rates. In addition, Machine learning (ML) has emerged as a promising tool for enhancing the growing security and efficiency concerns and maximizing the potential of emerging computing platforms across diverse domains. With the rapid advancements in technology and the increasing complexity of computing systems, ML offers a unique approach to addressing security challenges and optimizing performance. This paper presents a comprehensive study on the application of ML techniques to secure chaotic communication for wearable devices, with an emphasis on chaos-based encryption. The theoretical foundations of ML for secure chaotic communication are discussed, including the use of ML algorithms for signal synchronization, noise reduction, and encryption. Various ML algorithms, such as deep neural networks, support vector machines, decision trees, and ensemble learning methods, are explored for designing chaos-based encryption algorithms. This paper places a greater emphasis on methodological aspects, metrics, and performance evaluation of machine learning algorithms. In addition, the paper presents an in-depth investigation into state-of-the-art ML-assisted defense and attacks on chaos-based encryption schemes, covering their theoretical foundations and practical implementations. Furthermore, a review of the potential advantages and limitations associated with the utilization of ML techniques in secure communication systems and encryption is provided. The study extends to exploring the diverse range of applications that can benefit from ML-assisted encryption, such as secure communication in the Internet of Things (IoTs), cloud computing, and wireless networks. Overall, we provide insights into the applications of ML for secure chaotic communication in wearable devices, its challenges, and opportunities, offering a foundation for further research and development and facilitating advancements in the field of secure chaotic communication
    corecore