1,896 research outputs found

    An Analytical Solution in Detuned Two Level Systems

    Full text link
    Finding the evolution of two level Hamiltonian is of great importance in quantum computation and quantum precision manipulation due to the requirement of quantum experiment control. However, the Schr\"odinger equation of an arbitrary time-dependent two level Hamiltonian is hardly solvable due to its non-commutativity Hamiltonian in different times. In this article, we expand and demonstrate an exact solution of Schr\"odinger equation respect to general two level systems with a few limitations. This analytical solution has lots of manipulative parameters and a few boundary restrictions, which could drive many applications. Furthermore, we show the adaptive capacity of our scheme, which demonstrated the widely use of our scheme, and make it suitable for most of experiment Hamiltonian directly

    Improving Anomaly Segmentation with Multi-Granularity Cross-Domain Alignment

    Full text link
    Anomaly segmentation plays a crucial role in identifying anomalous objects within images, which facilitates the detection of road anomalies for autonomous driving. Although existing methods have shown impressive results in anomaly segmentation using synthetic training data, the domain discrepancies between synthetic training data and real test data are often neglected. To address this issue, the Multi-Granularity Cross-Domain Alignment (MGCDA) framework is proposed for anomaly segmentation in complex driving environments. It uniquely combines a new Multi-source Domain Adversarial Training (MDAT) module and a novel Cross-domain Anomaly-aware Contrastive Learning (CACL) method to boost the generality of the model, seamlessly integrating multi-domain data at both scene and sample levels. Multi-source domain adversarial loss and a dynamic label smoothing strategy are integrated into the MDAT module to facilitate the acquisition of domain-invariant features at the scene level, through adversarial training across multiple stages. CACL aligns sample-level representations with contrastive loss on cross-domain data, which utilizes an anomaly-aware sampling strategy to efficiently sample hard samples and anchors. The proposed framework has decent properties of parameter-free during the inference stage and is compatible with other anomaly segmentation networks. Experimental conducted on Fishyscapes and RoadAnomaly datasets demonstrate that the proposed framework achieves state-of-the-art performance.Comment: Accepted to ACM Multimedia 202

    Angular Reconstruction of a Lead Scintillating-Fiber Sandwiched Electromagnetic Calorimeter

    Full text link
    A new method called Neighbor Cell Deposited Energy Ratio (NCDER) is proposed to reconstruct incidence position in a single layer for a 3-dimensional imaging electromagnetic calorimeter (ECAL).This method was applied to reconstruct the ECAL test beam data for the Alpha Magnetic Spectrometer-02 (AMS-02). The results show that this method can achieve an angular resolution of 7.36\pm 0.08 / \sqrt(E) \oplus 0.28 \pm 0.02 degree in the determination of the photons direction, which is much more precise than that obtained with the commonly-adopted Center of Gravity(COG) method (8.4 \pm 0.1 /sqrt(E) \oplus 0.8\pm0.3 degree). Furthermore, since it uses only the properties of electromagnetic showers, this new method could also be used for other type of fine grain sampling calorimeters.Comment: 6 pages, 8 figure
    • …
    corecore