29 research outputs found

    Learning to Hallucinate Face Images via Component Generation and Enhancement

    Full text link
    We propose a two-stage method for face hallucination. First, we generate facial components of the input image using CNNs. These components represent the basic facial structures. Second, we synthesize fine-grained facial structures from high resolution training images. The details of these structures are transferred into facial components for enhancement. Therefore, we generate facial components to approximate ground truth global appearance in the first stage and enhance them through recovering details in the second stage. The experiments demonstrate that our method performs favorably against state-of-the-art methodsComment: IJCAI 2017. Project page: http://www.cs.cityu.edu.hk/~yibisong/ijcai17_sr/index.htm

    Stylizing Face Images via Multiple Exemplars

    Full text link
    We address the problem of transferring the style of a headshot photo to face images. Existing methods using a single exemplar lead to inaccurate results when the exemplar does not contain sufficient stylized facial components for a given photo. In this work, we propose an algorithm to stylize face images using multiple exemplars containing different subjects in the same style. Patch correspondences between an input photo and multiple exemplars are established using a Markov Random Field (MRF), which enables accurate local energy transfer via Laplacian stacks. As image patches from multiple exemplars are used, the boundaries of facial components on the target image are inevitably inconsistent. The artifacts are removed by a post-processing step using an edge-preserving filter. Experimental results show that the proposed algorithm consistently produces visually pleasing results.Comment: In CVIU 2017. Project Page: http://www.cs.cityu.edu.hk/~yibisong/cviu17/index.htm

    Self-supervised Spatio-temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics

    Full text link
    We address the problem of video representation learning without human-annotated labels. While previous efforts address the problem by designing novel self-supervised tasks using video data, the learned features are merely on a frame-by-frame basis, which are not applicable to many video analytic tasks where spatio-temporal features are prevailing. In this paper we propose a novel self-supervised approach to learn spatio-temporal features for video representation. Inspired by the success of two-stream approaches in video classification, we propose to learn visual features by regressing both motion and appearance statistics along spatial and temporal dimensions, given only the input video data. Specifically, we extract statistical concepts (fast-motion region and the corresponding dominant direction, spatio-temporal color diversity, dominant color, etc.) from simple patterns in both spatial and temporal domains. Unlike prior puzzles that are even hard for humans to solve, the proposed approach is consistent with human inherent visual habits and therefore easy to answer. We conduct extensive experiments with C3D to validate the effectiveness of our proposed approach. The experiments show that our approach can significantly improve the performance of C3D when applied to video classification tasks. Code is available at https://github.com/laura-wang/video_repres_mas.Comment: CVPR 201

    Self-supervised Video Representation Learning by Uncovering Spatio-temporal Statistics

    Get PDF
    This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc. Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts.Comment: Accepted by TPAMI. An extension of our previous work at arXiv:1904.0359

    Laplacian Denoising Autoencoder

    Get PDF
    While deep neural networks have been shown to perform remarkably well in many machine learning tasks, labeling a large amount of ground truth data for supervised training is usually very costly to scale. Therefore, learning robust representations with unlabeled data is critical in relieving human effort and vital for many downstream tasks. Recent advances in unsupervised and self-supervised learning approaches for visual data have benefited greatly from domain knowledge. Here we are interested in a more generic unsupervised learning framework that can be easily generalized to other domains. In this paper, we propose to learn data representations with a novel type of denoising autoencoder, where the noisy input data is generated by corrupting latent clean data in the gradient domain. This can be naturally generalized to span multiple scales with a Laplacian pyramid representation of the input data. In this way, the agent learns more robust representations that exploit the underlying data structures across multiple scales. Experiments on several visual benchmarks demonstrate that better representations can be learned with the proposed approach, compared to its counterpart with single-scale corruption and other approaches. Furthermore, we also demonstrate that the learned representations perform well when transferring to other downstream vision tasks

    Joint Face Hallucination and Deblurring via Structure Generation and Detail Enhancement

    Full text link
    We address the problem of restoring a high-resolution face image from a blurry low-resolution input. This problem is difficult as super-resolution and deblurring need to be tackled simultaneously. Moreover, existing algorithms cannot handle face images well as low-resolution face images do not have much texture which is especially critical for deblurring. In this paper, we propose an effective algorithm by utilizing the domain-specific knowledge of human faces to recover high-quality faces. We first propose a facial component guided deep Convolutional Neural Network (CNN) to restore a coarse face image, which is denoted as the base image where the facial component is automatically generated from the input face image. However, the CNN based method cannot handle image details well. We further develop a novel exemplar-based detail enhancement algorithm via facial component matching. Extensive experiments show that the proposed method outperforms the state-of-the-art algorithms both quantitatively and qualitatively.Comment: In IJCV 201

    Iterative Reconstruction Based on Latent Diffusion Model for Sparse Data Reconstruction

    Full text link
    Reconstructing Computed tomography (CT) images from sparse measurement is a well-known ill-posed inverse problem. The Iterative Reconstruction (IR) algorithm is a solution to inverse problems. However, recent IR methods require paired data and the approximation of the inverse projection matrix. To address those problems, we present Latent Diffusion Iterative Reconstruction (LDIR), a pioneering zero-shot method that extends IR with a pre-trained Latent Diffusion Model (LDM) as a accurate and efficient data prior. By approximating the prior distribution with an unconditional latent diffusion model, LDIR is the first method to successfully integrate iterative reconstruction and LDM in an unsupervised manner. LDIR makes the reconstruction of high-resolution images more efficient. Moreover, LDIR utilizes the gradient from the data-fidelity term to guide the sampling process of the LDM, therefore, LDIR does not need the approximation of the inverse projection matrix and can solve various CT reconstruction tasks with a single model. Additionally, for enhancing the sample consistency of the reconstruction, we introduce a novel approach that uses historical gradient information to guide the gradient. Our experiments on extremely sparse CT data reconstruction tasks show that LDIR outperforms other state-of-the-art unsupervised and even exceeds supervised methods, establishing it as a leading technique in terms of both quantity and quality. Furthermore, LDIR also achieves competitive performance on nature image tasks. It is worth noting that LDIR also exhibits significantly faster execution times and lower memory consumption compared to methods with similar network settings. Our code will be publicly available

    Learning to hallucinate face images via component generation and enhancement

    No full text
    corecore