12,253 research outputs found
Enabling occupational therapy students to take a fresh approach to psychosis
This practice evaluation describes the implementation of a 2-day workshop on
psychosis with third-year undergraduate occupational therapy students at
Brunel University. The work was undertaken by the teaching team at Brunel
University, a clinical psychologist working in assertive outreach and an
occupational therapist working in community mental health. The background
to the project and the way in which the 2-day workshop was adapted to
accommodate the university timetable are outlined. An evaluation of the
workshop, its place in the occupational therapy programme and the feedback
from students are presented
Angular momentum conservation for uniformly expanding flows
Angular momentum has recently been defined as a surface integral involving an
axial vector and a twist 1-form, which measures the twisting around of
space-time due to a rotating mass. The axial vector is chosen to be a
transverse, divergence-free, coordinate vector, which is compatible with any
initial choice of axis and integral curves. Then a conservation equation
expresses rate of change of angular momentum along a uniformly expanding flow
as a surface integral of angular momentum densities, with the same form as the
standard equation for an axial Killing vector, apart from the inclusion of an
effective energy tensor for gravitational radiation.Comment: 5 revtex4 pages, 3 eps figure
The Magnetization of Cu_2(C_5H_{12}N_2)_2Cl_4 : A Heisenberg Spin Ladder System
We study the magnetization of a Heisenberg spin ladder using exact
diagonalization techniques, finding three distinct magnetic phases. We consider
the results in relation to the experimental behaviour of the new copper
compound Cu_2(C_5H_{12}N_2)_2Cl_4 and deduce that the compound is well
described by such a model with a ratio of `chain' to `rung' bond strengths
(J/J^\prime) of the order of 0.2, consistent with results from the magnetic
susceptibility. The effects of temperature, spin impurities and additional
diagonal bonds are presented and we give evidence that these diagonal bonds are
indeed of a ferromagnetic nature.Comment: Latex file (4 pages), related figures (encapsulated postscript)
appende
A complete distribution of redshifts for sub-millimetre galaxies in the SCUBA-2 Cosmology Legacy Survey UDS field
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. Available online at https://doi.org/10.1093/mnras/stx1689. © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Sub-milllimetre galaxies (SMGs) are some of the most luminous star-forming galaxies in the Universe, however their properties remain hard to determine due to the difficulty of identifying their optical\slash near-infrared counterparts. One of the key steps to determining the nature of SMGs is measuring a redshift distribution representative of the whole population. We do this by applying statistical techniques to a sample of 761 850m sources from the SCUBA-2 Cosmology Legacy Survey observations of the UKIDSS Ultra-Deep Survey (UDS) Field. We detect excess galaxies around per cent of the 850m positions in the deep UDS catalogue, giving us the first 850m selected sample to have virtually complete optical\slash near-infrared redshift information. Under the reasonable assumption that the redshifts of the excess galaxies are representative of the SMGs themselves, we derive a median SMG redshift of , with 68 per cent of SMGs residing between $1.07Peer reviewedFinal Accepted Versio
Unified first law of black-hole dynamics and relativistic thermodynamics
A unified first law of black-hole dynamics and relativistic thermodynamics is
derived in spherically symmetric general relativity. This equation expresses
the gradient of the active gravitational energy E according to the Einstein
equation, divided into energy-supply and work terms. Projecting the equation
along the flow of thermodynamic matter and along the trapping horizon of a
blackhole yield, respectively, first laws of relativistic thermodynamics and
black-hole dynamics. In the black-hole case, this first law has the same form
as the first law of black-hole statics, with static perturbations replaced by
the derivative along the horizon. There is the expected term involving the area
and surface gravity, where the dynamic surface gravity is defined as in the
static case but using the Kodama vector and trapping horizon. This surface
gravity vanishes for degenerate trapping horizons and satisfies certain
expected inequalities involving the area and energy. In the thermodynamic case,
the quasi-local first law has the same form, apart from a relativistic factor,
as the classical first law of thermodynamics, involving heat supply and
hydrodynamic work, but with E replacing the internal energy. Expanding E in the
Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy,
gravitational potential energy and thermal energy. There is also a weak type of
unified zeroth law: a Gibbs-like definition of thermal equilibrium requires
constancy of an effective temperature, generalising the Tolman condition and
the particular case of Hawking radiation, while gravithermal equilibrium
further requires constancy of surface gravity. Finally, it is suggested that
the energy operator of spherically symmetric quantum gravity is determined by
the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra
Fractional Quantum Hall Physics in Jaynes-Cummings-Hubbard Lattices
Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum
emulation as they exhibit convenient state preparation and measurement, and
in-situ tuning of parameters. We show how to realise strongly correlated states
of light in Jaynes-Cummings-Hubbard arrays under the introduction of an
effective magnetic field. The effective field is realised by dynamic tuning of
the cavity resonances. We demonstrate the existence of Fractional Quantum Hall
states by com- puting topological invariants, phase transitions between
topologically distinct states, and Laughlin wavefunction overlap.Comment: 5 pages, 3 figure
Noether Currents of Charged Spherical Black Holes
We calculate the Noether currents and charges for Einstein-Maxwell theory
using a version of the Wald approach. In spherical symmetry, the choice of time
can be taken as the Kodama vector. For the static case, the resulting combined
Einstein-Maxwell charge is just the mass of the black hole. Using either a
classically defined entropy or the Iyer-Wald selection rules, the entropy is
found to be just a quarter of the area of the trapping horizon. We propose
identifying the combined Noether charge as an energy associated with the Kodama
time. For the extremal black hole case, we discuss the problem of Wald's
rescaling of the surface gravity to define the entropy.Comment: 4 page
Construction and enlargement of traversable wormholes from Schwarzschild black holes
Analytic solutions are presented which describe the construction of a
traversable wormhole from a Schwarzschild black hole, and the enlargement of
such a wormhole, in Einstein gravity. The matter model is pure radiation which
may have negative energy density (phantom or ghost radiation) and the
idealization of impulsive radiation (infinitesimally thin null shells) is
employed.Comment: 22 pages, 7 figure
- …