24 research outputs found
The Japanese space gravitational wave antenna; DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future
Japanese space gravitational wave antenna. DECIGO is expected to open a new window of
observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing
various mysteries of the universe such as dark energy, formation mechanism of supermassive
black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of
three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–
Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-
DECIGO first and finally DECIGO in 2024
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
Gravitational Wave Physics and Astronomy in the nascent era
The detections of gravitational waves (GW) by the LIGO/Virgo collaborations provide various possibilities for both physics and astronomy. We are quite sure that GW observations will develop a lot, both in precision and in number, thanks to the continuous work on the improvement of detectors, including the expected new detector, KAGRA, and the planned detector, LIGO-India. On this occasion, we review the fundamental outcomes and prospects of gravitational wave physics and astronomy. We survey the development, focusing on representative sources of gravitational waves: binary black holes, binary neutron stars, and supernovae. We also summarize the role of gravitational wave observations as a probe of new physics
Current status of space gravitational wave antenna DECIGO and B-DECIGO
Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the
future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO
aims at the detection of primordial gravitational waves, which could be
produced during the inflationary period right after the birth of the universe.
There are many other scientific objectives of DECIGO, including the direct
measurement of the acceleration of the expansion of the universe, and reliable
and accurate predictions of the timing and locations of neutron star/black hole
binary coalescences. DECIGO consists of four clusters of observatories placed
in the heliocentric orbit. Each cluster consists of three spacecraft, which
form three Fabry-Perot Michelson interferometers with an arm length of 1,000
km. Three clusters of DECIGO will be placed far from each other, and the fourth
cluster will be placed in the same position as one of the three clusters to
obtain the correlation signals for the detection of the primordial
gravitational waves. We plan to launch B-DECIGO, which is a scientific
pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the
technologies required for DECIGO, as well as to obtain fruitful scientific
results to further expand the multi-messenger astronomy.Comment: 10 pages, 3 figure
The status of DECIGO
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present
Current status of space gravitational wave antenna DECIGO and B-DECIGO
The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy
Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects