3,011 research outputs found

    Probing Planetary Surfaces and Deep Interiors

    Get PDF
    No abstract availabl

    GHz sandwich strip inductors based on Fe-N Films

    Full text link
    Planar strip inductors consisting of two Fe-N films enclosing a conducting film made of Cu, were fabricated on oxidized Si substrates. The inductors were 1mm long, 2 to 100 um wide, with layers of thickness ~0.1 um for the magnetic films and ~0.5 um for the conductor. The soft (Hc=4-8 Oe) magnetic layers were biased during impedance measurement by applying an external field along the strip length thereby facilitating the transverse susceptibility configuration. Biased strips exhibited 70 to 100% inductance enhancement at 1GHz with quality factors Q=4.5 to 3, respectively. The magnetic contribution to the total flux in the narrow devices was less than predicted theoretically, which was attributed to hardening of the magnetic material at the edges of the strip, where the deposition was close to 60 degree incidence. Test films were fabricated on tilted substrates and found to develop a very high anisotropy (up to 1 kOe) for deposition angles larger than 30 degrees. Optimizing the flux closure at the strip edges and using thicker conductor layers is essential for further improving the performance of sandwich strip inductors.Comment: 18 pages, 9 figure

    Single-electron transistors in electromagnetic environments

    Full text link
    The current-voltage (I-V) characteristics of single-electron transistors (SETs) have been measured in various electromagnetic environments. Some SETs were biased with one-dimensional arrays of dc superconducting quantum interference devices (SQUIDs). The purpose was to provide the SETs with a magnetic-field-tunable environment in the superconducting state, and a high-impedance environment in the normal state. The comparison of SETs with SQUID arrays and those without arrays in the normal state confirmed that the effective charging energy of SETs in the normal state becomes larger in the high-impedance environment, as expected theoretically. In SETs with SQUID arrays in the superconducting state, as the zero-bias resistance of the SQUID arrays was increased to be much larger than the quantum resistance R_K = h/e^2 = 26 kohm, a sharp Coulomb blockade was induced, and the current modulation by the gate-induced charge was changed from e periodic to 2e periodic at a bias point 0<|V|<2D_0/e, where D_0 is the superconducting energy gap. The author discusses the Coulomb blockade and its dependence on the gate-induced charge in terms of the single Josephson junction with gate-tunable junction capacitance.Comment: 8 pages with 10 embedded figures, RevTeX4, published versio

    Quantum Effects in Small-Capacitance Single Josephson Junctions

    Full text link
    We have measured the current-voltage (I-V) characteristics of small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. The single-junction I-V curve is sensitive to the impedance of the environment, which can be tuned IN SITU. We have observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance R_0' of the SQUID arrays is much higher than the quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling within the theory of current-biased single Josephson junctions. Based on the theory, we have calculated the I-V curves numerically in order to compare with the experimental ones at R_0' >> R_K. The numerical calculation agrees with the experiments qualitatively. We also discuss the R_0' dependence of the single-Josephson-junction I-V curve in terms of the superconductor-insulator transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio

    Fast switching current detection at low critical currents

    Full text link
    A pulse-and-hold technique is used to measure the switching of small critical current Josephson junctions. This technique allows one to achieve a good binary detection and therefore measure switching probabilities. The technique overcomes limitations on simple square pulses and allows for the measurement of junctions with critical currents of the order of 10nA with bias pulses of the order of 100ns. A correlation analysis of the switching events is performed to show how the switching probability depends on the wait time between repeated bias pulses.Comment: Changed abstract Added reference 1

    Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling in Single Josephson Junctions

    Full text link
    We have measured the current-voltage characteristics of small-capacitance single Josephson junctions at low temperatures (T < 0.04 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. We have clearly observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance of the SQUID arrays is much higher than the quantum resistance h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling in the single Josephson junction.Comment: RevTeX, 4 pages with 6 embedded figure
    • …
    corecore