445 research outputs found
Thermodynamics of the BCS-BEC crossover
We present a self-consistent theory for the thermodynamics of the BCS-BEC
crossover in the normal and superfluid phase which is both conserving and
gapless. It is based on the variational many-body formalism developed by
Luttinger and Ward and by DeDominicis and Martin. Truncating the exact
functional for the entropy to that obtained within a ladder approximation, the
resulting self-consistent integral equations for the normal and anomalous Green
functions are solved numerically for arbitrary coupling. The critical
temperature, the equation of state and the entropy are determined as a function
of the dimensionless parameter , which controls the crossover from the
BCS-regime of extended pairs to the BEC-regime of tightly bound molecules. The
tightly bound pairs turn out to be described by a Popov-type approximation for
a dilute, repulsive Bose gas. Even though our approximation does not capture
the critical behaviour near the continuous superfluid transition, our results
provide a consistent picture for the complete crossover thermodynamics which
compare well with recent numerical and field-theoretic approaches at the
unitarity point.Comment: published versio
Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions
We review a striking array of recent experiments, and their theoretical
interpretations, on the superfluid transition in He in the presence of a
heat flux, . We define and evaluate a new set of critical point exponents.
The statics and dynamics of the superfluid-normal interface are discussed, with
special attention to the role of gravity. If is in the same direction as
gravity, a self-organized state can arise, in which the entire sample has a
uniform reduced temperature, on either the normal or superfluid side of the
transition. Finally, we review recent theory and experiment regarding the heat
capacity at constant . The excitement that surrounds this field arises from
the fact that advanced thermometry and the future availability of a
microgravity experimental platform aboard the International Space Station will
soon open to experimental exploration decades of reduced temperature that were
previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references
Accepted for publication in Colloquia section of Reviews of Modern Physic
Brief increases in corticosterone affect morphology, stress responses, and telomere length, but not post-fledging movements, in a wild songbird
Organisms are frequently exposed to challenges during development, such as
poor weather and food shortage. Such challenges can initiate the hormonal
stress response, which involves secretion of glucocorticoids. Although the
hormonal stress response helps organisms deal with challenges, long-term
exposure to high levels of glucocorticoids can have morphological, behavioral,
and physiological consequences, especially during development. Glucocorticoids
are also associated with reduced survival and telomere shortening. To
investigate whether brief, acute exposures to glucocorticoids can also produce
these phenotypic effects in free-living birds, we exposed wild tree swallow
(Tachycineta bicolor) nestlings to a brief exogenous dose of cort once per day
for five days and then measured their morphology, baseline and stress-induced
corticosterone levels, and telomere length. We also deployed radio tags on a
subset of nestlings, which allowed us to determine the age at which tagged
nestlings left the nest (fledged) and their pattern of presence and absence at
the natal site during the post-breeding period. Corticosterone-treated
nestlings had lower mass, higher baseline and stress-induced corticosterone,
and reduced telomeres; other metrics of morphology were affected weakly or not
at all. Our treatment resulted in no significant effect on survival to
fledging, fledge age, or age at first departure from the natal site, and we
found no negative effect of corticosterone on inter-annual return rate. These
results show that brief acute corticosterone exposure during development can
have measurable effects on phenotype in free-living tree swallows.
Corticosterone may therefore mediate correlations between rearing environment
and phenotype in developing organisms, even in the absence of prolonged
stressors.Comment: 35 pages, 4 figures, 1 appendi
Liquid 4He near the superfluid transition in the presence of a heat current and gravity
The effects of a heat current and gravity in liquid 4He near the superfluid
transition are investigated for temperatures above and below T_lambda. We
present a renormalization-group calculation based on model F for the Green's
function in a self-consistent approximation which in quantum many-particle
theory is known as the Hartree approximation. The approach can handle a zero
average order parameter above and below T_lambda and includes effects of
vortices. We calculate the thermal conductivity and the specific heat for all
temperatures T and heat currents Q in the critical regime. Furthermore, we
calculate the temperature profile. Below T_lambda we find a second correlation
length which describes the dephasing of the order parameter field due to
vortices. We find dissipation and mutual friction of the superfluid-normal
fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare
our theoretical results with recent experiments.Comment: 26 pages, 9 figure
Spectroscopy of Superfluid Pairing in Atomic Fermi Gases
We study the dynamic structure factor for density and spin within the
crossover from BCS superfluidity of atomic fermions to the Bose-Einstein
condensation of molecules. Both structure factors are experimentally accessible
via Bragg spectroscopy, and allow for the identification of the pairing
mechanism: the spin structure factor allows for the determination of the two
particle gap, while the collective sound mode in the density structure reveals
the superfluid state.Comment: 4 pages, 3 figure
Formation of magnetic impurities and pair-breaking effect in a superfluid Fermi gas
We theoretically investigate a possible idea to introduce magnetic impurities
to a superfluid Fermi gas. In the presence of population imbalance
(, where is the number of Fermi atoms with
pseudospin ), we show that nonmagnetic potential
scatterers embedded in the system are magnetized in the sense that some of
excess -spin atoms are localized around them. They destroy the
superfluid order parameter around them, as in the case of magnetic impurity
effect discussed in the superconductivity literature. This pair-breaking effect
naturally leads to localized excited states below the superfluid excitation
gap. To confirm our idea in a simply manner, we treat an attractive Fermi
Hubbard model within the mean-field theory at T=0. We self-consistently
determine superfluid properties around a nonmagnetic impurity, such as the
superfluid order parameter, local population imbalance, as well as
single-particle density of states, in the presence of population imbalance.
Since the competition between superconductivity and magnetism is one of the
most fundamental problems in condensed matter physics, our results would be
useful for the study of this important issue in cold Fermi gases.Comment: 27 pages, 14 figure
Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying
We study the problem of channel pairing and power allocation in a
multichannel multihop relay network to enhance the end-to-end data rate. Both
amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are
considered. Given fixed power allocation to the channels, we show that channel
pairing over multiple hops can be decomposed into independent pairing problems
at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal,
where each relay pairs its incoming and outgoing channels by their SNR order.
For the joint optimization of channel pairing and power allocation under both
total and individual power constraints, we show that the problem can be
decoupled into two subproblems solved separately. This separation principle is
established by observing the equivalence between sorting SNRs and sorting
channel gains in the jointly optimal solution. It significantly reduces the
computational complexity in finding the jointly optimal solution. It follows
that the channel pairing problem in joint optimization can be again decomposed
into independent pairing problems at each relay based on sorted channel gains.
The solution for optimizing power allocation for DF relaying is also provided,
as well as an asymptotically optimal solution for AF relaying. Numerical
results are provided to demonstrate substantial performance gain of the jointly
optimal solution over some suboptimal alternatives. It is also observed that
more gain is obtained from optimal channel pairing than optimal power
allocation through judiciously exploiting the variation among multiple
channels. Impact of the variation of channel gain, the number of channels, and
the number of hops on the performance gain is also studied through numerical
examples.Comment: 15 pages. IEEE Transactions on Signal Processin
- …