8,358 research outputs found
Hopping conductivity in the quantum Hall effect -- revival of universal scaling
We have measured the temperature dependence of the conductivity
of a two-dimensional electron system deep into the localized regime of the
quantum Hall plateau transition. Using variable-range hopping theory we are
able to extract directly the localization length from this experiment. We
use our results to study the scaling behavior of as a function of the
filling factor distance to the critical point of the transition.
We find for all samples a power-law behavior
with a universal scaling exponent as proposed theoretically
High Frequency Conductivity in the Quantum Hall Regime
We have measured the complex conductivity of a two-dimensional
electron system in the quantum Hall regime up to frequencies of 6 GHz at
electron temperatures below 100 mK. Using both its imaginary and real part we
show that can be scaled to a single function for different
frequencies and for all investigated transitions between plateaus in the
quantum Hall effect. Additionally, the conductivity in the variable-range
hopping regime is used for a direct evaluation of the localization length
. Even for large filing factor distances from the critical
point we find with a scaling exponent
Conductance fluctuations at the quantum Hall plateau transition
We analyze the conductance fluctuations observed in the quantum Hall regime
for a bulk two-dimensional electron system in a Corbino geometry. We find that
characteristics like the power spectral density and the temperature dependence
agree well with simple expectations for universal conductance fluctuations in
metals, while the observed amplitude is reduced. In addition, the dephasing
length , which governs the temperature dependence of
the fluctuations, is surprisingly different from the scaling length
governing the width of the quantum Hall plateau
transition
Multiple transitions of the spin configuration in quantum dots
Single electron tunneling is studied in a many electron quantum dot in high
magnetic fields. For such a system multiple transitions of the spin
configuration are theoretically predicted. With a combination of spin blockade
and Kondo effect we are able to detect five regions with different spin
configurations. Transitions are induced with changing electron numbers.Comment: 4 pages, 5 figure
Interaction-Induced Spin Polarization in Quantum Dots
The electronic states of lateral many electron quantum dots in high magnetic
fields are analyzed in terms of energy and spin. In a regime with two Landau
levels in the dot, several Coulomb blockade peaks are measured. A zig-zag
pattern is found as it is known from the Fock-Darwin spectrum. However, only
data from Landau level 0 show the typical spin-induced bimodality, whereas
features from Landau level 1 cannot be explained with the Fock-Darwin picture.
Instead, by including the interaction effects within spin-density-functional
theory a good agreement between experiment and theory is obtained. The absence
of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure
Spin noise spectroscopy in GaAs
We observe the noise spectrum of electron spins in bulk GaAs by Faraday
rotation noise spectroscopy. The experimental technique enables the undisturbed
measurement of the electron spin dynamics in semiconductors. We measure
exemplarily the electron spin relaxation time and the electron Lande g-factor
in n-doped GaAs at low temperatures and find good agreement of the measured
noise spectrum with an unpretentious theory based on Poisson distribution
probability.Comment: 4 pages, 4 figure
- …