26 research outputs found
Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles
We compare the performance of a typical hole transport layer for organic photovoltaics (OPVs), Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin film with a series of PEDOT:PSS layers doped with silver (Ag) nanoparticles (NPs) of various size distributions. These hybrid layers have attracted great attention as buffer layers in plasmonic OPVs, although there is no report up to date on their isolated performance. In the present study we prepared a series of PEDOT:PSS layers sandwiched between indium tin oxide (ITO) and gold (Au) electrodes. Ag NPs were deposited on top of the ITO by electron beam evaporation followed by spin coating of PEDOT:PSS. Electrical characterization performed in the dark showed linear resistive behavior for all the samples; lower resistance was observed for the hybrid ones. It was found that the resistivity of the samples decreases with increasing the particle's size. A substantial increase of the electric field between the ITO and the Au electrodes was seen through the formation of current paths through the Ag NPs. A striking observation is the slight increase in the slope of the current density versus voltage curves when measured under illumination for the case of the plasmonic layers, indicating that changes in the electric field in the vicinity of the NP due to plasmonic excitation is a non-vanishing factor
Electronic properties of binary and ternary, hard and refractory transition metal nitrides
We present a detailed study of the microstructure and morphology of a very wide variety of binary transition metal nitrides (TiN, ZrN and TaN) grown by pulsed laser deposition (PLD) as well as of ternary nitrides consisting of Ti alloyed with Ta or Zr. We also present a critical investigation of their electronic properties such as the plasma energy, electrical resistivity and work function, with respect to their composition, microstructure and the electronic structure of the constituent metals using optical reflectance spectroscopy, Hall effect and Kelvin probe measurement
Substrate current and degradation of n-channel polycrystalline Silicon Thin Film Transistors
International audienc
Effects of buffer layer properties and annealing process on bulk heterojunction morphology and organic solar cell performance
The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry
High performance transistors based on the controlled growth of triisopropylsilylethynyl-pentacene crystals via non-isotropic solvent evaporation
Triisopropylsilylethynyl-pentacene (TIPS-PEN) has proven to be one of the most promising small molecules in the field of molecular electronics, due to its unique features in terms of stability, performance and ease of processing. Among a wide variety of well-established techniques for the deposition of TIPS-PEN, blade-metered methods have recently gained great interest towards the formation of uniform crystalline films over a large area. Following this rationale, we herein designed a versatile approach based on blade-coating, which overcomes the problem of anisotropic crystal formation by manipulating the solvent evaporation behaviour, in a way that brings about a preferential degree of crystal orientation. The applicability of this method was evaluated by fabricating field-effect transistors on glass as well as on silicon dioxide/silicon (SiO2/Si) substrates. Interestingly, in an attempt to improve the rheological and wetting behaviour of the liquid films on the SiO2/Si substrates, we introduced a polymeric interlayer of polystyrene (PS) or polymethylmethacrylate (PMMA) which concurrently acts as passivation and crystallization assisting layer. In this case, the synergistic effects of the highly-ordered crystalline structure and the oxide surface modification were thoroughly investigated. The overall performance of the fabricated devices revealed excellent electrical characteristics, with high saturation mobilities up to 0.72 cm2 V-1 s-1 (on glass with polymeric dielectric), on/off current ratio >104 and low threshold voltage values (<-5 V). This journal is © the Partner Organisations 2014