37 research outputs found

    Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: an observational cohort study

    Get PDF
    INTRODUCTION: As patients after cardiac arrest suffer from the consequences of global ischemia reperfusion, we aimed to establish the incidence of acute kidney injury (AKI) in these patients, and to investigate its possible association to severe hypoxic brain damage. METHODS: One hundred and seventy-one patients (135 male, mean age 61.6 +/- 15.0 years) after cardiac arrest were included in an observational cohort study. Serum creatinine was determined at admission and 24, 48 and 72 hours thereafter. Serum levels of neuron-specific enolase (NSE) were measured 72 hours after admission as a marker of hypoxic brain damage. Clinical outcome was assessed at intensive care unit (ICU) discharge using the Pittsburgh cerebral performance category (CPC). RESULTS: AKI as defined by AKI Network criteria occurred in 49% of the study patients. Patients with an unfavourable prognosis (CPC 3-5) were affected significantly more frequently (P = 0.013). Whilst serum creatinine levels decreased in patients with good neurological outcome (CPC 1 or 2) over the ensuing 48 hours, it increased in patients with unfavourable outcome (CPC 3-5). ROC analysis identified DeltaCrea24 <-0.19 mg/dl as the value for prediction with the highest accuracy. The odds ratio for an unfavourable outcome was 3.81 (95% CI 1.98-7.33, P = 0.0001) in cases of unchanged or increased creatinine levels after 24 hours compared to those whose creatinine levels decreased during the first 24 hours. NSE levels were found to correlate with the change in serum creatinine in the first 24 hours both in simple and multivariate regression (both r = 0.24, P = 0.002). CONCLUSIONS: In this large cohort of patient after cardiac arrest, we found that AKI occurs in nearly 50% of patients when the new criteria are applied. Patients with unfavourable neurological outcome are affected more frequently. A significant association between the development of AKI and NSE levels indicating hypoxic brain damage was observed. Our data show that changes in serum creatinine may contribute to the prediction of outcome in patients with cardiac arrest. Whereas a decline in serum creatinine (> 0.2 mg/dL) in the first 24 hours after cardiac arrest indicates good prognosis, the risk of unfavourable outcome is markedly elevated in patients with constant or increasing serum creatinine

    2-year survival of patients undergoing mild hypothermia treatment after ventricular fibrillation cardiac arrest is significantly improved compared to historical controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Therapeutic hypothermia has been proven to be effective in improving neurological outcome in patients after cardiac arrest due to ventricular fibrillation (VF). Data concerning the effect of hypothermia treatment on long-term survival however is limited.</p> <p>Materials and methods</p> <p>Clinical and outcome data of 107 consecutive patients undergoing therapeutic hypothermia after cardiac arrest due to VF were compared with 98 historical controls. Neurological outcome was assessed at ICU discharge according to the Pittsburgh cerebral performance category (CPC). A Kaplan-Meier analysis of follow-up data concerning mortality after 24 months as well as a Cox-regression to adjust for confounders were calculated.</p> <p>Results</p> <p>Neurological outcome significantly improved after mild hypothermia treatment (hypothermia group CPC 1-2 59.8%, control group CPC 1-2 24.5%; p < 0.01). In Kaplan-Meier survival analysis hypothermia treatment was also associated with significantly improved 2-year probability for survival (hypothermia 55% vs. control 34%; p = 0.029). Cox-regression analysis revealed hypothermia treatment (p = 0.031) and age (p = 0.013) as independent predictors of 24-month survival.</p> <p>Conclusions</p> <p>Our study demonstrates that the early survival benefit seen with therapeutic hypothermia persists after two years. This strongly supports adherence to current recommendations regarding postresuscitation care for all patients after cardiac arrest due to VF and maybe other rhythms as well.</p

    Serial measurement of neuron specific enolase improves prognostication in cardiac arrest patients treated with hypothermia: A prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuron specific enolase (NSE) has repeatedly been evaluated for neurological prognostication in patients after cardiac arrest. However, it is unclear whether current guidelines for NSE cutoff levels also apply to cardiac arrest patients treated with hypothermia. Thus, we investigated the prognostic significance of absolute NSE levels and NSE kinetics in cardiac arrest patients treated with hypothermia.</p> <p>Methods</p> <p>In a prospective study of 35 patients resuscitated from cardiac arrest, NSE was measured daily for four days following admission. Outcome was assessed at ICU discharge using the CPC score. All patients received hypothermia treatment for 24 hours at 33°C with a surface cooling device according to current guidelines.</p> <p>Results</p> <p>The cutoff for absolute NSE levels in patients with unfavourable outcome (CPC 3-5) 72 hours after cardiac arrest was 57 μg/l with an area under the curve (AUC) of 0.82 (sensitivity 47%, specificity 100%). The cutoff level for NSE kinetics in patients with unfavourable outcome (CPC 3-5) was an absolute increase of 7.9 μg/l (AUC 0.78, sensitivity 63%, specificity 100%) and a relative increase of 33.1% (AUC 0.803, sensitivity 67%, specificity 100%) at 48 hours compared to admission.</p> <p>Conclusion</p> <p>In cardiac arrest patients treated with hypothermia, prognostication of unfavourable outcome by NSE kinetics between admission and 48 hours after resuscitation may be superior to prognostication by absolute NSE levels.</p

    A rare case of neuroleptic malignant syndrome presenting with serious hyperthermia treated with a non-invasive cooling device: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A rare side effect of antipsychotic medication is neuroleptic malignant syndrome, mainly characterized by hyperthermia, altered mental state, haemodynamic dysregulation, elevated serum creatine kinase and rigor. There may be multi-organ dysfunction including renal and hepatic failure as well as serious rhabdomyolysis, acute respiratory distress syndrome and disseminated intravascular coagulation. The prevalence of neuroleptic malignant syndrome is between 0.02% and 2.44% for patients taking neuroleptics and it is not necessary to fulfil all cardinal features characterizing the syndrome to be diagnosed with neuroleptic malignant syndrome. Because of other different life-threatening diseases matching the various clinical findings, the correct diagnosis can sometimes be hard to make. A special problem of intensive care treatment is the management of severe hyperthermia. Lowering of body temperature, however, may be a major clinical problem because hyperthermia in neuroleptic malignant syndrome is typically unresponsive to antipyretic agents while manual cooling proves difficult due to peripheral vasoconstriction.</p> <p>Case presentation</p> <p>A 22-year-old Caucasian man was admitted unconscious with a body temperature of 42°C, elevated serum creatine phosphokinase, tachycardia and hypotonic blood pressure. In addition to intensive care standard therapy for coma and shock, a non-invasive cooling device (Arctic Sun 2000<sup>®</sup>, Medivance Inc., USA), originally designed to induce mild therapeutic hypothermia in patients after cardiopulmonary resuscitation, was used to lower body temperature. After successful treatment it became possible to obtain information from the patient about his recent ambulant treatment with Olanzapin (Zyprexa®) for schizophrenia.</p> <p>Conclusion</p> <p>Numerous case reports have been published about patients who developed neuroleptic malignant syndrome due to Olanzapin (Zyprexa®) medication. Frequently hyperthermia has been observed in these cases with varying outcomes. In our case the only residual impairment for the patient is dysarthria with corresponding symmetric cerebellar pyramidal cell destruction demonstrated by increased signal intensity in T2-weighted magnetic resonance imaging, most likely caused by the excessive hyperthermia.</p
    corecore