213 research outputs found
Evidence for a Fractional Quantum Hall Nematic State in Parallel Magnetic Fields
We report magneto-transport measurements for the fractional quantum Hall
state at filling factor 5/2 as a function of applied parallel magnetic
field (). As is increased, the 5/2 state becomes increasingly
anisotropic, with the in-plane resistance along the direction of
becoming more than 30 times larger than in the perpendicular direction.
Remarkably, the resistance anisotropy ratio remains constant over a relatively
large temperature range, yielding an energy gap which is the same for both
directions. Our data are qualitatively consistent with a fractional quantum
Hall \textit{nematic} phase
Anisotropic composite fermions and fractional quantum Hall effect
We study the role of anisotropy on the transport properties of composite
fermions near Landau level filling factor in two-dimensional holes
confined to a GaAs quantum well. By applying a parallel magnetic field, we tune
the composite fermion Fermi sea anisotropy and monitor the relative change of
the transport scattering time at along the principal directions.
Interpreted in a simple Drude model, our results suggest that the scattering
time is longer along the longitudinal direction of the composite fermion Fermi
sea. Furthermore, the measured energy gap for the fractional quantum Hall state
at decreases when anisotropy becomes significant. The decrease,
however, might partly stem from the charge distribution becoming bilayer-like
at very large parallel magnetic fields
Observation of An Anisotropic Wigner Crystal
We report a new correlated phase of two-dimensional charged carriers in high
magnetic fields, manifested by an anisotropic insulating behavior at low
temperatures. It appears near Landau level filling factor in hole
systems confined to wide GaAs quantum wells when the sample is tilted in
magnetic field to an intermediate angle. The parallel field component
() leads to a crossing of the lowest two Landau levels, and an
elongated hole wavefunction in the direction of . Under these
conditions, the in-plane resistance exhibits an insulating behavior, with the
resistance along more than 10 times smaller than the resistance
perpendicular to . We interpret this anisotropic insulating phase as a
two-component, striped Wigner crystal
Multicomponent fractional quantum Hall states with subband and spin degrees of freedom
In wide GaAs quantum wells where two electric subbands are occupied we apply
a parallel magnetic field or increase the electron density to cause a crossing
of the two Landau levels of these subbands and with opposite spins. Near
the crossing, the fractional quantum Hall states in the filling factor range
exhibit a remarkable sequence of pseudospin polarization transitions
resulting from the interplay between the spin and subband degrees of freedom.
The field positions of the transitions yield a new and quantitative measure of
the composite Fermions' discrete energy level separations. Surprisingly, the
separations are smaller when the electrons have higher spin-polarization
Spin-Polarization of Composite Fermions and Particle-Hole Symmetry Breaking
We study the critical spin-polarization energy () above which
fractional quantum Hall states in two-dimensional electron systems confined to
symmetric GaAs quantum wells become fully spin-polarized. We find a significant
decrease of as we increase the well-width. In systems with
comparable electron layer thickness, for fractional states
near Landau level filling is about twice larger than those near
, suggesting a broken particle-hole symmetry. Theoretical
calculations, which incorporate Landau level mixing through an effective
three-body interaction, and finite layer thickness, capture certain qualitative
features of the experimental results
Even-denominator Fractional Quantum Hall Effect at a Landau Level Crossing
The fractional quantum Hall effect (FQHE), observed in two-dimensional (2D)
charged particles at high magnetic fields, is one of the most fascinating,
macroscopic manifestations of a many-body state stabilized by the strong
Coulomb interaction. It occurs when the filling factor () of the quantized
Landau levels (LLs) is a fraction which, with very few exceptions, has an odd
denominator. In 2D systems with additional degrees of freedom it is possible to
cause a crossing of the LLs at the Fermi level. At and near these crossings,
the FQHE states are often weakened or destroyed. Here we report the observation
of an unusual crossing of the two \emph{lowest-energy} LLs in high-mobility
GaAs 2D systems which brings to life a new \emph{even-denominator} FQHE
at
Vagus nerve stimulation for depression: efficacy and safety in a European study
Background Vagus nerve stimulation (VNS) therapy is associated with a decrease in seizure frequency in partial-onset seizure patients. Initial trials suggest that it may be an effective treatment, with few side-effects, for intractable depression. Method An open, uncontrolled European multi-centre study (D03) of VNS therapy was conducted, in addition to stable pharmacotherapy, in 74 patients with treatment-resistant depression (TRD). Treatment remained unchanged for the first 3 months; in the subsequent 9 months, medications and VNS dosing parameters were altered as indicated clinically. Results The baseline 28-item Hamilton Depression Rating Scale (HAMD-28) score averaged 34. After 3 months of VNS, response rates (50% reduction in baseline scores) reached 37% and remission rates (HAMD-28 score <10) 17%. Response rates increased to 53% after 1 year of VNS, and remission rates reached 33%. Response was defined as sustained if no relapse occurred during the first year of VNS after response onset; 44% of patients met these criteria. Median time to response was 9 months. Most frequent side-effects were voice alteration (63% at 3 months of stimulation) and coughing (23%). Conclusions VNS therapy was effective in reducing severity of depression; efficacy increased over time. Efficacy ratings were in the same range as those previously reported from a USA study using a similar protocol; at 12 months, reduction of symptom severity was significantly higher in the European sample. This might be explained by a small but significant difference in the baseline HAMD-28 score and the lower number of treatments in the current episode in the European stud
- …