1,007 research outputs found
High-Tc superconductivity in entirely end-bonded multi-walled carbon nanotubes
We report that entirely end-bonded multi-walled carbon nanotubes (MWNTs) can
show superconductivity with the transition temperature Tc as high as 12K that
is approximately 40-times larger than those reported in ropes of single-walled
nanotubes. We find that emergence of this superconductivity is very sensitive
to junction structures of Au electrode/MWNTs. This reveals that only MWNTs with
optimal numbers of electrically activated shells, which are realized by the
end-bonding, can allow the superconductivity due to inter shell effects.Comment: 5 page
Meissner effect in honeycomb arrays of multi-walled carbon nanotubes
We report Meissner effect for type-II superconductors with a maximum Tc of 19
K, which is the highest value among those in new-carbon related
superconductors, found in the honeycomb arrays of multi-walled CNTs (MWNTs).
Drastic reduction of ferromagnetic catalyst and efficient growth of MWNTs by
deoxidization of catalyst make the finding possible. The weak magnetic
anisotropy, superconductive coherence length (- 7 nm), and disappearance of the
Meissner effect after dissolving array structure indicate that the graphite
structure of an MWNT and those intertube coupling in the honeycomb array are
dominant factors for the mechanism.Comment: 6 page
Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector
We measured forces applied by an actuator with a YBCO film at near 77 K for
the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An
actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81
square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on
a test mass. The presented actuator system can be used to displace the mirror
of LCGT for fringe lock of the interferometer.Comment: 9 pages, 3 figure
Lunar Crustal Mineralogy inferred from Lunar Meteorites and Kaguya Data.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月18日(金) 国立国語研究所 2階講
Electroluminescence of negatively charged single NV centers in diamond
The realization of electroluminescence (EL) of negatively charged nitrogen vacancy (NV−) centers is important toward all-electrical control of diamond quantum devices. In this study, we demonstrated electrical excitation and detection of EL of single NV⁻ centers by using lateral diamond p⁺–i(n⁻)–n⁺ diodes. It had been grown by homoepitaxy using the plasma enhanced chemical vapor deposition technique. We introduced a lightly phosphorus doped i(n⁻) layer to stabilize the negative state of NV centers. It was estimated that the efficiency of the electrical excitation rate of the NV center was more than 30 times enhanced by introducing lateral diamond p⁺–i(n⁻)–n⁺ diodes structure compared with the previous vertical diode. Furthermore, the EL of a single NV− center embedded in the i(n⁻) layer region was characterized. The results show that the charge state of the single NV centers can be manipulated by the voltage applied to the p⁺–i(n⁻)–n⁺ diode, where the emission of EL is increasingly dominated by NV⁻ in the range of 30 to 50 V
Fabrication of C<sub>60</sub> field-effect transistors with polyimide and Ba<sub>0.4</sub>Sr<sub>0.6</sub>Ti<sub>0.96</sub>O<sub>3</sub> gate insulators
Flexible C60 field-effect transistor (FET) device has been fabricated with polyimide gate insulator on the poly(ethylene terephthalate) substrate, and n-channel normally-off FET properties are observed in this FET device. The field-effect mobility, ?, is estimated to be ~10-2 cm2 V-1 s-1 at 300 K. Furthermore, the C60 FET has been fabricated with high dielectric Ba0.4Sr0.6Ti0.96O3 (BST) gate insulator, showing n-channel properties; the ? value is estimated to be ~10-4 cm2 V-1 s-1 at 300 K. The FET device operates at very low gate voltage, VG, and low drain-source voltage, VDS. Thus these C60 FET devices possess flexibility and low-voltage operation characteristic of polyimide and BST gate insulators, respectively.</p
- …