3,132 research outputs found
Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions
Earth-sized planets around nearby stars are being detected for the first time
by ground-based radial velocity and space-based transit surveys. This milestone
is opening the path towards the definition of missions able to directly detect
the light from these planets, with the identification of bio-signatures as one
of the main objectives. In that respect, both ESA and NASA have identified
nulling interferometry as one of the most promising techniques. The ability to
study distant planets will however depend on exozodiacal dust clouds
surrounding the target stars. In this paper, we assess the impact of
exozodiacal dust clouds on the performance of an infrared nulling
interferometer in the Emma X-array configuration. For the nominal mission
architecture with 2-m aperture telescopes, we found that point-symmetric
exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can
be tolerated in order to survey at least 150 targets during the mission
lifetime. Considering modeled resonant structures created by an Earth-like
planet orbiting at 1 AU around a Sun-like star, we show that the tolerable dust
density for planet detection goes down to about 15 times the solar zodiacal
density for face-on systems and decreases with the disc inclination. The upper
limits on the tolerable exozodiacal dust density derived in this study must be
considered as rather pessimistic, but still give a realistic estimation of the
typical sensitivity that we will need to reach on exozodiacal discs in order to
prepare the scientific programme of future Earth-like planet characterisation
missions.Comment: 17 pages, accepted for publication in A&
The Medicago genome provides insight into the evolution of rhizobial symbioses
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation1. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species2. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ~94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa’s genomic toolbo
Extreme managers, extreme workplaces: capitalism, organizations and corporate psychopaths
This paper reports on in-depth, qualitative research carried out in England in 2013 among five organizational directors and two senior managers who had worked with other senior directors or managers who were Corporate Psychopaths, as measured by a management psychopathy measure. The Corporate Psychopaths reported on in this research displayed remarkable consistency in their approach to management to the extent that they could be called “text book examples” of managerial psychopathy. They were seen as being organizational stars and as deserving of performance awards by those above them, while the Corporate Psychopaths simultaneously subjected those below them to extreme forms of behavior, including bullying, intimidation and coercion and also engaged in extreme forms of mismanagement; such as very poor levels of personnel management, directionless leadership, miss-management of resources and outright fraud
Open-Source ANSS Quake Monitoring System Software
ANSS stands for the Advanced National Seismic System of the U.S.A., and ANSS Quake Monitoring System (AQMS) is the earthquake management system (EMS) that most of its member regional seismic networks (RSNs) use. AQMS is based on Earthworm, but instead of storing files on disk, it uses a relational database with replication capability to store pick, amplitude, waveform, and event parameters. The replicated database and other features of AQMS make it a fully redundant system. A graphical user interface written in Java, Jiggle, is used to review automatically generated picks and event solutions, relocate events, and recalculate magnitudes. Add‐on mechanisms to produce various postearthquake products such as ShakeMaps and focal mechanisms are available as well. It provides a configurable automatic alarming and notification system. The Pacific Northwest Seismic Network, one of the Tier 1 ANSS RSNs, has modified AQMS to be compatible with a freely available, capable, open‐source database system, PostgreSQL, and is running this version successfully in production. The AQMS Software Working Group has moved the software from a subversion repository server hosted at the California Institute of Technology to a public repository at gitlab.com. The drawback of AQMS as a whole is that it is complex to fully configure and comprehend. Nevertheless, the fact that it is very capable, documented, and now free to use, might make it an attractive EMS choice for many seismic networks
Action learning in higher education: reflections on facilitating AL in leadership development programmes
This account of practice offers reflections and insights on facilitating Action Learning (AL) in Leadership Programmes within the Higher Education context. The account shares our reflections and key observations as practitioner academics, facilitating AL Sets within three higher education leadership programmes. We draw on our knowledge and expertise as facilitators of learning and development in the AL and leadership space. Our reflections have highlighted two key themes in our facilitation experience. First, autonomy of learning and the significance of AL participants’ voice. Second, creating a shift from task-focus to people-focus through use of metaphor and visualisation as a means of enquiry. This account will be of relevance to practitioner and academics engaged in leadership development and those involved in the facilitation of AL who may consider adopting AL as a part of a managerial leadership programme
Improved V II log() Values, Hyperfine Structure Constants, and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937
New experimental absolute atomic transition probabilities are reported for
203 lines of V II. Branching fractions are measured from spectra recorded using
a Fourier transform spectrometer and an echelle spectrometer. The branching
fractions are normalized with radiative lifetime measurements to determine the
new transition probabilities. Generally good agreement is found between this
work and previously reported V II transition probabilities. Use of two
spectrometers, independent radiometric calibration methods, and independent
data analysis routines enables a reduction in systematic uncertainties, in
particular those due to optical depth errors. In addition, new hyperfine
structure constants are measured for selected levels by least squares fitting
line profiles in the FTS spectra. The new V II data are applied to high
resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to
determine new, more accurate V abundances. Lines covering a range of wavelength
and excitation potential are used to search for non-LTE effects. Very good
agreement is found between our new solar photospheric V abundance, log
{\epsilon}(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value.
In HD 84937, we derive [V/H] = -2.08 from 68 lines, leading to a value of
[V/Fe] = 0.24.Comment: 32 pages, 7 tables (3 machine-readable), 8 figures; accepted for
publication in ApJ
- …