145 research outputs found
Recommended from our members
Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts
Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs.
Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs.
Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature.
Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change
Recommended from our members
P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production
Terrestrial photosynthesis is the basis for vegetation growth and drives the land carbon cycle. Accurately simulating gross primary production (GPP, ecosystem-level apparent photosynthesis) is key for satellite monitoring and Earth System Model predictions under climate change. While robust models exist for describing leaf-level photosynthesis, predictions diverge due to uncertain photosynthetic traits and parameters which vary on multiple spatial and temporal scales. Here, we describe and evaluate a gross primary production (GPP, photosynthesis per unit ground area) model, the P-model, that combines the Farquhar-von Caemmerer-Berry model for C3 photosynthesis with an optimality principle for the carbon assimilation- transpiration trade-off, and predicts a multi-day average light use efficiency (LUE) for any climate and C3 vegetation type. The model is forced here with satellite data for the fraction of absorbed photosynthetically active radiation and site-specific meteorological data and is evaluated against GPP estimates from a globally distributed network of ecosystem flux measurements. Although the P-model requires relatively few inputs and prescribed parameters, the R2 for predicted versus observed GPP based on the full model setup is 0.75 (8-day mean, 131 sites) – better than some state-of-the-art satellite data-driven light use efficiency models. The R2 is reduced to 0.69 when not accounting for the reduction in quantum yield at low temperatures and effects of low soil moisture on LUE. The R2 for the P-model-predicted LUE is 0.37 (means by site) and 0.53 (means by vegetation type). The P-model provides a simple but powerful method for predicting – rather than prescribing light use efficiency and simulating terrestrial photosythesis across a wide range of conditions. The model is available as an R package (rpmodel)
The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols
The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over two decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other
and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. Here we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models
Using the past to constrain the future: how the palaeorecord can improve estimates of global warming
Climate sensitivity is defined as the change in global mean equilibrium
temperature after a doubling of atmospheric CO2 concentration and provides a
simple measure of global warming. An early estimate of climate sensitivity,
1.5-4.5{\deg}C, has changed little subsequently, including the latest
assessment by the Intergovernmental Panel on Climate Change.
The persistence of such large uncertainties in this simple measure casts
doubt on our understanding of the mechanisms of climate change and our ability
to predict the response of the climate system to future perturbations. This has
motivated continued attempts to constrain the range with climate data, alone or
in conjunction with models. The majority of studies use data from the
instrumental period (post-1850) but recent work has made use of information
about the large climate changes experienced in the geological past.
In this review, we first outline approaches that estimate climate sensitivity
using instrumental climate observations and then summarise attempts to use the
record of climate change on geological timescales. We examine the limitations
of these studies and suggest ways in which the power of the palaeoclimate
record could be better used to reduce uncertainties in our predictions of
climate sensitivity.Comment: The final, definitive version of this paper has been published in
Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All
rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
The status and challenge of global fire modelling
This is the final version of the article. Available from European Geosciences Union / Copernicus Publications via the DOI in this record.The discussion paper version of this article was published in Biogeosciences Discussions on 25 January 2016 and is in ORE at http://hdl.handle.net/10871/34451Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.Stijn Hantson and Almut Arneth acknowledge support by the EU FP7 projects BACCHUS (grant agreement no. 603445) and LUC4C (grant agreement no. 603542). This work was supported, in part, by the German Federal Ministry of Education and Research (BMBF), through the Helmholtz
Association and its research programme ATMO, and the HGF Impulse and Networking fund. The MC-FIRE model development was supported by the global change research programmes of the Biological Resources Division of the US Geological Survey (CA 12681901,112-), the US Department of Energy (LWT-6212306509), the US Forest Service (PNW96–5I0 9 -2-CA), and funds from the Joint Fire Science Program. I. Colin Prentice is supported by the AXA Research Fund under the Chair Programme in Biosphere and Climate Impacts, part of the Imperial College initiative Grand Challenges in Ecosystems and the Environment. Fang Li was funded by the National Natural Science Foundation (grant agreement no. 41475099 and no. 2010CB951801). Jed O. Kaplan was supported by the European Research Council (COEVOLVE 313797). Sam S. Rabin was funded by the National Science Foundation Graduate Research Fellowship, as well as by the Carbon Mitigation Initiative. Allan Spessa acknowledges funding support provided by the Open University Research Investment Fellowship scheme. FireMIP is a non-funded community initiative and participation is open to all. For more information, contact Stijn Hantson ([email protected])
Recommended from our members
Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on ecosystems and human societies in the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39–536 Mha) and global annual fire carbon emission (0.91–4.75 Pg C yr−1) for modern conditions (2002–2012), but most of the range in burnt area is within observational uncertainty (345–468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent interannual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the Northern Hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions, and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. The two older fire models included in the FireMIP ensemble (LPJ–GUESS–GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to distinguish between the remaining ensemble members; some of these models are better at representing certain aspects of the fire regime; none clearly outperforms all other models across the full range of variables assessed
Signaling in Secret: Pay-for-Performance and the Incentive and Sorting Effects of Pay Secrecy
Key Findings: Pay secrecy adversely impacts individual task performance because it weakens the perception that an increase in performance will be accompanied by increase in pay; Pay secrecy is associated with a decrease in employee performance and retention in pay-for-performance systems, which measure performance using relative (i.e., peer-ranked) criteria rather than an absolute scale (see Figure 2 on page 5); High performing employees tend to be most sensitive to negative pay-for- performance perceptions; There are many signals embedded within HR policies and practices, which can influence employees’ perception of workplace uncertainty/inequity and impact their performance and turnover intentions; and When pay transparency is impractical, organizations may benefit from introducing partial pay openness to mitigate these effects on employee performance and retention
Terrestrial biosphere changes over the last 120 kyr
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C
Comment on Qian et al. 2008: La Niña and El Niño composites of atmospheric CO2 change
It is well known that interannual extremes in the rate of change of atmospheric CO2 are strongly influenced by the occurrence of El Niño-Southern Oscillation (ENSO) events. Qian et al. presented ENSO composites of atmospheric CO2 changes. We show that their composites do not reflect the atmospheric changes that are most relevant to understanding the role of ENSO on atmospheric CO2 variability. We present here composites of atmospheric CO2 change that differ markedly from those of Qian et al., and reveal previously unreported asymmetries between the effects on the global carbon system of El Niño and La Niña events. The calendar-year timing differs; La Niña changes in atmospheric CO2 typically occur primarily over September–May, while El Niño changes occur primarily over December–August. And the net concentration change is quite different; La Niña changes are about half the size of El Niño changes. These results illustrate new aspects of the ENSO/global carbon budget interaction and provide useful global-scale benchmarks for the evaluation of Earth System Model studies of the carbon system
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …