28 research outputs found
Durabilité de la culture cotonnière selon l'utilisation des insecticides : cas du Togo de 1991-2010
Dans la perception des profanes, le coton est encore associé à la culture consommant le plus d'insecticides néfastes pour la santé et l'environnement. Une telle mauvaise image n'est plus méritée selon une étude internationale, mais les pays producteurs ont peu analysé et informé sur l'évolution de l'utilisation d'insecticides. Cette communication comble la lacune dans le cas du Togo. L'étude est basée sur la reconstitution des séries de données des surfaces emblavées et d'insecticides distribués aux producteurs de coton du Togo, de 1990 à 2010. Les données sur les insecticides concernent les volumes distribués ainsi que leurs compositions en matières actives, permettant ainsi de déduire la consommation de matières actives par hectare. Par ailleurs, les charges toxicologiques vis-à-vis de divers éléments de la faune ont été calculées à partir des indices d'écotoxicité établis par la FAO pour chaque matière active. La consommation de matières actives insecticides au Togo a chuté régulièrement jusqu'à un litre/hectare, du même niveau que l'Australie qui recourt par ailleurs aux variétés génétiquement modifiées. La charge toxicologique, pesant sur l'homme mais aussi sur divers éléments de la faune comme les abeilles ou les daphnés des cours d'eau, a diminué quoique de manière moins régulière. Cette évolution est la conséquence d'une protection limitée depuis trois décennies à moins de six traitements et de l'adoption de nouvelles générations de molécules insecticides. Au Togo, l'utilisation des insecticides dans la culture cotonnière a évolué dans une direction plus compatible avec le souci de la santé humaine et de la préservation de l'environnement, mais cette évolution est extrapolable à tous les pays cotonniers de l'Afrique francophone. Il convient de poursuivre l'évolution engagée dans les décisions relatives aux insecticides à commander, en s'inspirant des indicateurs utilisés dans cette étude. (Résumé d'auteur
Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation
A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development
Modeling organic electronic materials: bridging length and time scales
Organic electronics is a popular and rapidly growing field of research. The optical, electrical and mechanical properties of organic molecules and materials can be tailored using increasingly well controlled synthetic methods. The challenge and fascination with this field of research is derived from the fact that not only the chemical identity, but also the spatial arrangement of the molecules critically affects the performance of the material. Thus synthetic, fabrication, characterisation and computational scientists need to work closely to relate a materials performance in a device to the molecular details that cause and optimise that performance. For computational scientists in particular, the need to relate macroscopic device performance to details of molecular electronic structure brings challenges in methodology due to the need to bridge many orders of time and length scales. This article provides a survey of computational methods applied to multiple-length and time scale problems in organic electronic materials. Here we seek to highlight a few particular approaches that expand the simulation toolbox
Identifying Atomic Scale Structure in Undoped/Doped Semicrystalline P3HT Using Inelastic Neutron Scattering
The
greatest advantage of organic materials is the ability to synthetically
tune desired properties. However, structural heterogeneity often obfuscates
the relationship between chemical structure and functional properties.
Inelastic neutron scattering (INS) is sensitive to both local structure
and chemical environment and provides atomic level details that cannot
be obtained through other spectroscopic or diffraction methods. INS
data are composed of a density of vibrational states with no selection
rules, which means that every structural configuration is equally
weighted in the spectrum. This allows the INS spectrum to be quantitatively
decomposed into different structural motifs. We present INS measurements
of the semiconducting polymer P3HT doped with F4TCNQ supported by
density functional theory calculations to identify two dominant families
of undoped crystalline structures and one dominant doped structural
motif, in spite of considerable heterogeneity. The differences between
the undoped and doped structures indicate that P3HT side chains flatten
upon doping
Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films
Qubits made from superconducting materials are a mature platform for quantum
information science application such as quantum computing. However,
materials-based losses are now a limiting factor in reaching the coherence
times needed for applications. In particular, knowledge of the atomistic
structure and properties of the circuit materials is needed to identify,
understand, and mitigate materials-based decoherence channels. In this work we
characterize the atomic structure of the native oxide film formed on Nb
resonators by comparing fluctuation electron microscopy experiments to density
functional theory calculations, finding that an amorphous layer consistent with
an NbO stoichiometry. Comparing X-ray absorption measurements at the
Oxygen K edge with first-principles calculations, we find evidence of d-type
magnetic impurities in our sample, known to cause impedance in proximal
superconductors. This work identifies the structural and chemical composition
of the oxide layer grown on Nb superconductors, and shows that soft X-ray
absorption can fingerprint magnetic impurities in these superconducting
systems.Comment: 7 pages, 4 figures. The following article has been submitted to
Applied Physics Letter