22,986 research outputs found
Life Cycles of \u3ci\u3eLeuctra Duplicata\u3c/i\u3e and \u3ci\u3eOstrocerca Prolongata\u3c/i\u3e in an Intermittent Streamlet in Quebec (Plecoptera: Leuctridae and Nemouridae)
Large populations of Ostrocerca prolongata and Leuctra duplicata developed in a small intermittent stream in the foothills of the Laurentian Highlands of Quebec. Both species were univoltine in 1974-1975. Ostrocerca prolongata started emerging in mid-to late May. followed by L. duplicata about 2 weeks later. The emergence periods lasted 3-4 weeks with similar patterns in both sexes. Ostrocerca prolongata laid its eggs before the stream dried up in early July. while L. duplicata oviposited just afterward. The eggs of both species did not hatch before October when flow had resumed; the prolonged incubation was due to a diapause in Ostrocerca, but to a depressed development rate in Leuctra. Nymphal growth continued through winter and accelerated considerably in May in both populations. Despite much overlap in timings of the life cycles and in size-frequency distributions of the nymphs. there appeared to be little competition between the two species. probably due to differing food habits
Waveshaping electronic circuit
Circuit provides output signal with sinusoidal function in response to bipolar transition of input signal. Instantaneous transition shapes into linear rate of change and linear rate of change shapes into sinusoidal rate of change. Circuit contains only active components; therefore, compatibility with integrated circuit techniques is assured
Input gate circuit converted for use as linear amplifier
Commercially available integrated circuit that is marketed as a digital computer input gate circuit was converted to a linear amplifier in a microphone circuit that has high input impedance, low output impedance, low cost, and is small enough to fit on a standard printed circuit card
Tire/wheel concept
A tire and wheel assembly is disclosed in which a low profile pneumatic tire (having sidewalls which deflect inwardly under load) and a wheel (having a rim featuring a narrow central channel and extended rim flanges) form the combination. The extended rim flanges support the tire sidewalls under static and dynamic loading conditions to produce a combination particularly suited to aircraft applications
The role of voice technology in advanced helicopter cockpits
The status of voice output and voice recognition technology in relation to helicopter cockpit applications is described. The maturing of this technology provides many opportunities for new approaches to crew workload reduction. The helicopter operating environment, potential application areas, and the impact on advanced cockpit design are discussed
MUSE CSP: An Extension to the Constraint Satisfaction Problem
This paper describes an extension to the constraint satisfaction problem
(CSP) called MUSE CSP (MUltiply SEgmented Constraint Satisfaction Problem).
This extension is especially useful for those problems which segment into
multiple sets of partially shared variables. Such problems arise naturally in
signal processing applications including computer vision, speech processing,
and handwriting recognition. For these applications, it is often difficult to
segment the data in only one way given the low-level information utilized by
the segmentation algorithms. MUSE CSP can be used to compactly represent
several similar instances of the constraint satisfaction problem. If multiple
instances of a CSP have some common variables which have the same domains and
constraints, then they can be combined into a single instance of a MUSE CSP,
reducing the work required to apply the constraints. We introduce the concepts
of MUSE node consistency, MUSE arc consistency, and MUSE path consistency. We
then demonstrate how MUSE CSP can be used to compactly represent lexically
ambiguous sentences and the multiple sentence hypotheses that are often
generated by speech recognition algorithms so that grammar constraints can be
used to provide parses for all syntactically correct sentences. Algorithms for
MUSE arc and path consistency are provided. Finally, we discuss how to create a
MUSE CSP from a set of CSPs which are labeled to indicate when the same
variable is shared by more than a single CSP.Comment: See http://www.jair.org/ for any accompanying file
A method for the measurement of hydrodynamic oil films using ultrasonic reflection
The measurement of the thickness of an oil film in a lubricated component is essential information for performance monitoring and control. In this work, a new method for oil film thickness measurement, based on the reflection of ultrasound, is evaluated for use in fluid film journal bearing applications. An ultrasonic wave will be partially reflected when it strikes a thin layer between two solid media. The proportion of the wave reflected depends on the thickness of the layer and its acoustic properties. A simple quasi-static spring model shows how the reflection depends on the stiffness of the layer alone. This method has been first evaluated using flat plates separated by a film of oil, and then used in the measurement of oil films in a hydrodynamic journal bearing. A transducer is mounted on the outside of the journal and a pulse propagated through the shell. The pulse is reflected back at the oil film and received by the same transducer. The amplitude of the reflected wave is processed in the frequency domain. The spring model is then used to determine the oil film stiffness that can be readily converted to film thickness. Whilst the reflected amplitude of the wave is dependent on the frequency component, the measured film thickness is not; this indicates that the quasi-static assumption holds. Measurements of the lubricant film generated in a simple journal bearing have been taken over a range of loads and speeds. The results are compared with predictions from classical hydrodynamic lubrication theory. The technique has also been used to measure oil film thickness during transient loading events. The response time is rapid and film thickness variation due to step changes in load and oil feed pressure can be clearly observed
Exact Random Walk Distributions using Noncommutative Geometry
Using the results obtained by the non commutative geometry techniques applied
to the Harper equation, we derive the areas distribution of random walks of
length on a two-dimensional square lattice for large , taking into
account finite size contributions.Comment: Latex, 3 pages, 1 figure, to be published in J. Phys. A : Math. Ge
Oil film measurement in polytetrafluoroethylene-faced thrust pad bearings for hydrogenerator applications
There is a growing trend in the replacement of the babbit facing in thrust pad bearings with a composite polytetrafluoroethylene (PTFE) surface layer. The PTFE-faced bearings have been shown to allow a greater specific pressure, reduce thermal crowning, and, in some cases, negate the need for an oil-lift (jacking) system. These designs of bearing require new methods for the measurement of oil film thickness both to assist in their development and for plant condition monitoring. In this work, an ultrasonic method of oil film measurement is evaluated for this purpose. An ultrasonic transducer is mounted on the back face of the thrust pad. Pulses are generated and transmitted through the pad material, bonding interlayer, and PTFE surface layer. The proportion of the wave that reflects back from the oil film layer is determined. This is then related to the oil film thickness using a series of calibration experiments and a spring stiffness model. In practice, the reflected signal is difficult to distinguish, in the time domain, from other internal reflections from the pad. Signals are compared with reflections when no oil film is present and processing is carried out in the frequency domain. Experiments have been performed on a full size PTFE-faced thrust pad destined for a hydroelectric power station turbine. The instrumented pad was installed in a test facility and subjected to a range of loading conditions both with and without oil lift. Although there were some problems with the robustness of the experimental procedure, oil films were successfully measured and used to study the effect of the oil-lift system on film formation. © IMechE 2006
A new approach for the measurement of film thickness in liquid face seals
Face seals operate by allowing a small volume of the sealed fluid to escape and form a thin film between the contacting parts. The thickness of this film must be optimized to ensure that the faces are separated, yet the leakage is minimized. In this work the liquid film is measured using a novel ultrasonic approach with a view to developing a condition monitoring tool. The trials were performed in two stages. Initially tests were based on a lab simulation, where it was possible to compare the ultrasonic film thickness measurements with optical interference methods and capacitance methods. A direct correlation was seen between ultrasonic measurements and capacitance. Where ultrasonic and optical methods overlap, good correlation is observed; however, the optical method will not record film thickness above 0.72 m. A second set of trials was carried out, where the film thickness was monitored inside a seal test apparatus. Film thickness was successfully recorded as speed and load were varied. The results showed that while stationary the film thickness varied noticeably with load. When rotating, however, the oil film remained relatively stable around 2 m. During the normal operation of the seal, both sudden speed and load changes were applied in order to initiate a seal failure. During these events, the measured film thickness was seen to drop dramatically down to 0.2 m. This demonstrated the ability of the technique to predict failure in a face seal and therefore its aptitude for condition monitoring
- …