18 research outputs found

    Keypoints Detection and Feature Extraction: A Dynamic Genetic Programming Approach for Evolving Rotation-invariant Texture Image Descriptors

    No full text
    1089-778X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. The goodness of the features extracted from the instances and the number of training instances are two key components in machine learning, and building an effective model is largely affected by these two factors. Acquiring a large number of training instances is very expensive in some situations such as in the medical domain. Designing a good feature set, on the other hand, is very hard and often requires domain expertise. In computer vision, image descriptors have emerged to automate feature detection and extraction; however, domain-expert intervention is typically needed to develop these descriptors. The aim of this paper is to utilize genetic programming to automatically construct a rotation-invariant image descriptor by synthesizing a set of formulas using simple arithmetic operators and first-order statistics, and determining the length of the feature vector simultaneously using only two instances per class. Using seven texture classification image datasets, the performance of the proposed method is evaluated and compared against eight domain-expert hand-crafted image descriptors. Quantitatively, the proposed method has significantly outperformed, or achieved comparable performance to, the competitor methods. Qualitatively, the analysis shows that the descriptors evolved by the proposed method can be interpreted

    A multitree genetic programming representation for automatically evolving texture image descriptors

    No full text
    © Springer International Publishing AG 2017. Image descriptors are very important components in computer vision and pattern recognition that play critical roles in a wide range of applications. The main task of an image descriptor is to automatically detect micro-patterns in an image and generate a feature vector. A domain expert is often needed to undertake the process of developing an image descriptor. However, such an expert, in many cases, is difficult to find or expensive to employ. In this paper, a multitree genetic programming representation is adopted to automatically evolve image descriptors. Unlike existing hand-crafted image descriptors, the proposed method does not rely on predetermined features, instead, it automatically identifies a set of features using a few instances of each class. The performance of the proposed method is assessed using seven benchmark texture classification datasets and compared to seven state-of-the-art methods. The results show that the new method has significantly outperformed its counterpart methods in most cases

    Binary image classification: A genetic programming approach to the problem of limited training instances

    No full text
    © 2016 by the Massachusetts Institute of Technology. In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases

    A One-shot Learning Approach to Image Classification using Genetic Programming

    No full text
    In machine learning, it is common to require a large number of instances to train a model for classification. In many cases, it is hard or expensive to acquire a large number of instances. In this paper, we propose a novel genetic programming (GP) based method to the problem of automatic image classification via adopting a one-shot learning approach. The proposed method relies on the combination of GP and Local Binary Patterns (LBP) techniques to detect a predefined number of informative regions that aim at maximising the between-class scatter and minimising the within-class scatter. Moreover, the proposed method uses only two instances of each class to evolve a classifier. To test the effectiveness of the proposed method, four different texture data sets are used and the performance is compared against two other GP-based methods namely Conventional GP and Two-tier GP. The experiments revealed that the proposed method outperforms these two methods on all the data sets. Moreover, a better performance has been achieved by Naïve Bayes, Support Vector Machine, and Decision Trees (J48) methods when extracted features by the proposed method have been used compared to the use of domain-specific and Two-tier GP extracted features. © Springer International Publishing 2013

    Genetic programming for automatic skin cancer image classification

    No full text
    Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike “black-box” algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations

    Genetic Programming for algae detection in river images

    No full text
    © 2015 IEEE. Genetic Programming (GP) has been applied to a wide range of image analysis tasks including many real-world segmentation problems. This paper introduces a new biological application of detecting Phormidium algae in rivers of New Zealand using raw images captured from the air. In this paper, we propose a GP method to the task of algae detection. The proposed method synthesises a set of image operators and adopts a simple thresholding approach to segmenting an image into algae and non-algae regions. Furthermore, the introduced method operates directly on raw pixel values with no human assistance required. The method is tested across seven different images from different rivers. The results show good success on detecting areas of algae much more efficiently than traditional manual techniques. Furthermore, the result achieved by the proposed method is comparable to the hand-crafted ground truth with a F-measure fitness value of 0.64 (where 0 is best, 1 is worst) on average on the test set. Issues such as illumination, reflection and waves are discussed

    Cross-Domain Reuse of Extracted Knowledge in Genetic Programming for Image Classification

    No full text
    © 2017 IEEE. Genetic programming (GP) is a well-known evolutionary computation technique, which has been successfully used to solve various problems, such as optimization, image analysis, and classification. Transfer learning is a type of machine learning approach that can be used to solve complex tasks. Transfer learning has been introduced to GP to solve complex Boolean and symbolic regression problems with some promise. However, the use of transfer learning with GP has not been investigated to address complex image classification tasks with noise and rotations, where GP cannot achieve satisfactory performance, but GP with transfer learning may improve the performance. In this paper, we propose a novel approach based on transfer learning and GP to solve complex image classification problems by extracting and reusing blocks of knowledge/information, which are automatically discovered from similar as well as different image classification tasks during the evolutionary process. The proposed approach is evaluated on three texture data sets and three office data sets of image classification benchmarks, and achieves better classification performance than the state-of-the-art image classification algorithm. Further analysis on the evolved solutions/trees shows that the proposed approach with transfer learning can successfully discover and reuse knowledge/information extracted from similar or different problems to improve its performance on complex image classification problems

    Automatically Evolving Rotation-Invariant Texture Image Descriptors by Genetic Programming

    No full text
    © 2016 IEEE. In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labeled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel genetic programming-based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation and has significantly outperformed, or achieved a comparable performance to, the baseline methods

    A Genetic Programming Approach to Automatically Construct Informative Attributes for Mammographic Density Classification

    No full text
    Breast density is widely used as an initial indicator of developing breast cancer. At present, current classification methods for mammographic density usually require manual operations or expert knowledge that makes them expensive in real-time situations. Such methods achieve only moderate classification accuracy due to the limited model capacity and computational resources. In addition, most existing studies focus on improving classification accuracy using only raw images or the entire set of original attributes and remain unable to identify hidden patterns or causal information necessary to discriminate breast density classes. It is challenging to find high-quality knowledge when some attributes defining the data space are redundant or irrelevant. In this study, we present a novel attribute construction method using genetic programming (GP) for the task of breast density classification. To extract informative features from the raw mammographic images, wavelet decomposition, local binary patterns, and histogram of oriented gradients are utilized to include texture, local and global image properties. The study evaluates the goodness of the proposed method on two benchmark real-world mammographic image datasets and compares the results of the proposed GP method with eight conventional classification methods. The experimental results reveal that the proposed method significantly outperforms most of the commonly used classification methods in binary and multi-class classification tasks. Furthermore, the study shows the potential of G P for mammographic breast density classification by interpreting evolved attributes that highlight important breast density characteristics

    Genetic Programming for algae detection in river images

    No full text
    © 2015 IEEE. Genetic Programming (GP) has been applied to a wide range of image analysis tasks including many real-world segmentation problems. This paper introduces a new biological application of detecting Phormidium algae in rivers of New Zealand using raw images captured from the air. In this paper, we propose a GP method to the task of algae detection. The proposed method synthesises a set of image operators and adopts a simple thresholding approach to segmenting an image into algae and non-algae regions. Furthermore, the introduced method operates directly on raw pixel values with no human assistance required. The method is tested across seven different images from different rivers. The results show good success on detecting areas of algae much more efficiently than traditional manual techniques. Furthermore, the result achieved by the proposed method is comparable to the hand-crafted ground truth with a F-measure fitness value of 0.64 (where 0 is best, 1 is worst) on average on the test set. Issues such as illumination, reflection and waves are discussed
    corecore