1,051 research outputs found
Automatically Annotating the MIR Flickr Dataset: Experimental Protocols, Openly Available Data and Semantic Spaces
The availability of a large, freely redistributable set of high-quality annotated images is critical to allowing researchers in the area of automatic annotation, generic object recognition and concept detection to compare results. The recent introduction of the MIR Flickr dataset allows researchers such access. A dataset by itself is not enough, and a set of repeatable guidelines for performing evaluations that are comparable is required. In many cases it also is useful to compare the machine-learning components of different automatic annotation techniques using a common set of image features. This paper seeks to provide a solid, repeatable methodology and protocol for performing evaluations of automatic annotation software using the MIR Flickr dataset together with freely available tools for measuring performance in a controlled manner. This protocol is demonstrated through a set of experiments using a “semantic space” auto-annotator previously developed by the authors, in combination with a set of visual term features for the images that has been made publicly available for download. The paper also discusses how much training data is required to train the semantic space annotator with the MIR Flickr dataset. It is the hope of the authors that researchers will adopt this methodology and produce results from their own annotators that can be directly compared to those presented in this work
Semantic Retrieval and Automatic Annotation: Linear Transformations, Correlation and Semantic Spaces
This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly mapping an image feature space to a keyword space. The new technique is compared to several related techniques, and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and unannotated images) from a picture library
Length correction for larval and early-juvenile Atlantic menhaden (Brevoortia tyrannus) after preservation in alcohol
Body length measurement is an important part of growth, condition, and mortality analyses of larval and juvenile fish. If the measurements are not accurate (i.e., do not reflect real fish length), results of subsequent analyses may be affected considerably (McGurk, 1985; Fey, 1999; Porter et al., 2001). The primary cause of error in fish length measurement is shrinkage related to collection and
preservation (Theilacker, 1980; Hay, 1981; Butler, 1992; Fey, 1999). The magnitude of shrinkage depends on many factors, namely the duration and speed of the collection tow, abundance of other planktonic organisms in the sample (Theilacker, 1980; Hay, 1981; Jennings, 1991), the type and
strength of the preservative (Hay, 1982), and the species of fish (Jennings, 1991; Fey, 1999). Further, fish size affects shrinkage (Fowler and Smith, 1983; Fey, 1999, 2001), indicating that live length should be modeled as a function of preserved length (Pepin et al., 1998; Fey, 1999)
An Integrated Assessment of the Introduction of Lionfish (Pterois volitans/miles complex) to the Western Atlantic Ocean.
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast.
Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions.
Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made:
● With no action, the lionfish population will continue to grow along the southeast United States shelf.
● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows.
● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States.
Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations.
As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States.
The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries.
The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible.
(PDF contains 31 pages
Comparison of average larval fish vertical distributions among species exhibiting different transport pathways on the southeast United States continental shelf
Water currents are vertically structured in many marine systems and as a result, vertical movements by fish larvae and zooplankton affect horizontal transport (Power, 1984).
In estuaries, the vertical movements of larvae with tidal periods can result in their retention or ingress (Fortier
and Leggett, 1983; Rijnsdorp et al., 1985; Cronin and Forward, 1986; Forward et al., 1999). On the continental
shelf, the vertical movements of organisms interact daily and ontogenetically with depth-varying currents to affect horizontal transport (Pillar et al., 1989; Barange and Pillar, 1992; Cowen et al., 1993, 2000; Batchelder et al., 2002)
Focusing Attention on the Health Aspects of Foods Changes Value Signals in vmPFC and Improves Dietary Choice
Attention is thought to play a key role in the computation of stimulus values at the time of choice, which suggests that attention manipulations could be used to improve decision-making in domains where self-control lapses are pervasive. We used an fMRI food choice task with non-dieting human subjects to investigate whether exogenous cues that direct attention to the healthiness of foods could improve dietary choices. Behaviorally, we found that subjects made healthier choices in the presence of health cues. In parallel, stimulus value signals in ventromedial prefrontal cortex were more responsive to the healthiness of foods in the presence of health cues, and this effect was modulated by activity in regions of dorsolateral prefrontal cortex. These findings suggest that the neural mechanisms used in successful self-control can be activated by exogenous attention cues, and provide insights into the processes through which behavioral therapies and public policies could facilitate self-control
Semantic spaces revisited: investigating the performance of auto-annotation and semantic retrieval using semantic spaces
Semantic spaces encode similarity relationships between objects as a function of position in a mathematical space. This paper discusses three different formulations for building semantic spaces which allow the automatic-annotation and semantic retrieval of images. The models discussed in this paper require that the image content be described in the form of a series of visual-terms, rather than as a continuous feature-vector. The paper also discusses how these term-based models compare to the latest state-of-the-art continuous feature models for auto-annotation and retrieval
MapSnapper: Engineering an Efficient Algorithm for Matching Images of Maps from Mobile Phones
The MapSnapper project aimed to develop a system for robust matching of low-quality images of a paper map taken from a mobile phone against a high quality digital raster representation of the same map. The paper presents a novel methodology for performing content-based image retrieval and object recognition from query images that have been degraded by noise and subjected to transformations through the imaging system. In addition the paper also provides an insight into the evaluation-driven development process that was used to incrementally improve the matching performance until the design specifications were met
Giving order to image queries
Users of image retrieval systems often find it frustrating that the image they are looking for is not ranked near the top of the results they are presented. This paper presents a computational approach for ranking keyworded images in order of relevance to a given keyword. Our approach uses machine learning to attempt to learn what visual features within an image are most related to the keywords, and then provide ranking based on similarity to a visual aggregate. To evaluate the technique, a Web 2.0 application has been developed to obtain a corpus of user-generated ranking information for a given image collection that can be used to evaluate the performance of the ranking algorithm
Cross-shelf and seasonal variation in larval fish assemblages on the southeast United States continental shelf off the coast of Georgia
Seasonal and cross-shelf patterns were investigated in larval fish assemblages on the continental shelf off the coast of Georgia. The influence of environmental factors on
larval distributions also was examined, and larval transport processes on the shelf were considered. Ichthyoplankton and environmental data were collected approximately every other month from spring 2000 to winter
2002. Ten stations were repeatedly sampled along a 110-km cross-shelf transect, including four stations in the vicinity of Gray’s Reef National Marine Sanctuary. Correspondence analysis (CA) on untransformed community
data identified two seasonal (warm weather [spring, summer, and fall] and winter) and three cross-shelf larval assemblages (inner-, mid-, and outer-shelf ). Five environmental factors (temperature, salinity, density,
depth of the water column, and stratification) were related to larval cross-shelf distribution. Specifically,
increased water column stratification was associated with the outer-shelf assemblage in spring, summer, and fall. The inner shelf assemblage was associated with generally lower temperatures and lower salinities in the spring and summer and higher salinities in the winter. The three cross-shelf
regions indicated by the three assemblages coincided with the location of three primary water masses on the shelf. However, taxa occurring together within an assemblage were
transported to different parts of the shelf; thus, transport across the continental shelf off the coast of Georgia cannot be explained solely by twodimensional
physical factors
- …