84 research outputs found

    Concepts of GPCR-controlled navigation in the immune system

    No full text
    G-protein-coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR-controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non-hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR-controlled leukocyte navigation by intravital microscopy of immune cells in mice

    Synchrotron Radiation Time Gate Quartz Device For Nuclear Resonant Scattering

    Get PDF
    A synchrotron radiation time gate with X-cut quartz resonator has been constructed for use on nuclear resonant scattering at ultrahigh brilliance beam lines. The purpose is to discriminate the electronic scattered prompt (zero time) from the time delayed nuclear scattered photons. The special feature of this device is the possibility of adjusting the time modulation width of the gate without changing the frequency. © 1995 American Institute of Physics.6622235223

    Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic–carbonate sediments: Mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran

    Get PDF
    The Upper Jurassic Mozduran Formation with a thickness of 420 m at the type locality is the most important gas-bearing reservoir in NE Iran. It is mainly composed of limestone, dolostone with shale and gypsum interbeds that grade into coarser siliciclastics in the easternmost part of the basin. Eight stratigraphic sections were studied in detail in south of the Agh-Darband area. These analyses suggest that four carbonate facies associations and three siliciclastic lithofacies were deposited in shallow marine to shoreline environments, respectively. Cementation, compaction, dissolution, micritization, neomorphism, hematitization, dolomitization and fracturing are diagenetic processes that affected these sediments.Stable isotope variations of δ18O and δ13C in carbonate rocks show two different trends. High depletion of δ18O and low variation of δ13C probably reflect increasing temperatures during burial diagenesis, while the higher depletion in carbon isotope values with low variations in oxygen isotopes are related to fresh water flushing during meteoric diagenesis. Negative values of carbon isotopes may have also resulted from organic matter alteration during penetration of meteoric water. Fe and Mn enrichment with depletion of δ18O also supports the contention that alteration associated with higher depletion in carbon isotope values with low variations in oxygen isotopes took place during meteoric diagenesis. The presence of bright luminescence indicates redox conditions during precipitation of calcite cement

    ADAM8 signaling drives neutrophil migration and ARDS severity

    Get PDF
    Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8–/– mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain

    Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome

    Get PDF
    <p><u>(A) Circular map of the <i>E</i>. <i>coli</i> chromosome</u>: <i>oriC</i>, <i>dif</i> and <i>terD</i> to <i>terB</i> sites are indicated. Numbers refer to the chromosome coordinates (in kb) of MG1655. (<u>B) Linear map of the terminus region:</u> chromosome coordinates are shown increasing from left to right, as in the marker frequency panels (see Figure 1C for example), therefore in the opposite direction to the circular map. In addition to <i>dif</i> and <i>ter</i> sites, the positions of the <i>parS</i><sub>pMT1</sub> sites used for microscopy experiments are indicated. (<u>C) MFA analysis of terminus DNA loss in the <i>recB</i> mutant</u>: sequence read frequencies of exponential phase cells normalized to the total number of reads were calculated for each strain. Ratios of normalized reads in isogenic wild-type and <i>recB</i> mutant are plotted against chromosomal coordinates (in kb). The profile ratio of the terminus region is enlarged and the profile of the corresponding entire chromosomes is shown in inset. Original normalized profiles used to calculate ratios are shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.s005" target="_blank">S1 Fig</a>. The position of <i>dif</i> is indicated by a red arrow. The <i>ter</i> sites that arrest clockwise forks (<i>terC</i>, <i>terB</i>, green arrow) and counter-clockwise forks (<i>terA</i>, <i>terD</i>, blue arrow) are shown. <u>(D) Schematic representation of focus loss in the <i>recB</i> mutant:</u> Time-lapse microscopy experiments showed that loss of a focus in the <i>recB</i> mutant occurs concomitantly with cell division in one of two daughter cells, and that the cell that keeps the focus then generates a focus-less cell at each generation. The percentage of initial events was calculated as the percentage of cell divisions that generate a focus-less cell, not counting the following generations. In this schematic representation, two initial events occurred (generations #2 and #7) out of 9 generations, and focus loss at generation #2 is heritable. Panels shown in this figure were previously published in [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.ref019" target="_blank">19</a>] and are reproduced here to introduce the phenomenon.</p

    A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates

    Get PDF
    The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response

    SINGLE CRYSTAL STUDIES OF FERRIC MYOGLOBIN COMPOUNDS

    No full text
    On a étudié par spectrométrie Mössbauer des monocristaux de composés ferriques soumis à un faible champ magnétique, appliqué perpendiculairement à la direction des rayons γ et à la température de l'hélium liquide. Pour des composés haut spin, MtMb et MbF, des tenseurs A isotropes ont été obtenus. Pour le composé bas spin MbN3, l'axe de la plus grande composante du gradient de champ électrique est pratiquement dans le plan de l'heme et fait un angle de 32° avec une des quatre directions Fe-N. Ceci est en accord avec les résultats obtenus par RPE.The Mössbauer measurements of single crystals of some ferric compounds have been done in the presence of a small external magnetic field perpendicular to γ-rays at the liquid He temperature. For high spin compounds, metMb and MbF, isotropie A-tensors have been obtained. For low spin MbN3, the axis of the largest principal component of the EFG lies nearly in the heme plane and forms an angle of 32° with one of four Fe-N directions , which corresponds to the results of EPR experiments of single crystal MbN3
    corecore