59 research outputs found

    Modeling Carbon Chain Anions in L1527

    Get PDF
    The low-mass protostellar region L1527 is unusual because it contains observable abundances of unsaturated carbon-chain molecules including CnH radicals, H2Cn carbenes, cyanopolyynes, and the negative ions C4H- and C6H-, all of which are more associated with cold cores than with protostellar regions. Sakai et al. suggested that these molecules are formed in L1527 from the chemical precursor methane, which evaporates from the grains during the heat-up of the region. With the gas-phase osu.03.2008 network extended to include negative ions of the families Cn-, and CnH-, as well as the newly detected C3N-, we modeled the chemistry that occurs following methane evaporation at T~ 25-30 K. We are able to reproduce most of the observed molecular abundances in L1527 at a time of ~5000 yr. At later times, the overall abundance of anions become greater than that of electrons, which has an impact on many organic species and ions. The anion-to-neutral ratio in our calculation is in good agreement with observation for C6H- but exceeds the observed ratio by more than three orders of magnitude for C4H-. In order to explain this difference, further investigation is needed on the rate coefficients for electron attachment and other reactions regarding anions.Comment: 28 pages, 8 figures, ApJ accepte

    ALMA Astrochemical Observations of the Infrared-Luminous Merger NGC 3256

    Full text link
    In external galaxies, molecular composition may be influenced by extreme environments such as starbursts and galaxy mergers. To study such molecular chemistry, we observed the luminous-infrared galaxy and merger NGC 3256 using the Atacama Large Millimeter/sub-millimeter Array. We covered most of the 3-mm and 1.3-mm bands for a multi-species, multi-transition analysis. We first analyzed intensity ratio maps of selected lines such as HCN/HCO+^+, which shows no enhancement at an AGN. We then compared the chemical compositions within NGC 3256 at the two nuclei, tidal arms, and positions with influence from galactic outflows. We found the largest variation in SiO and CH3_3OH, species that are likely to be enhanced by shocks. Next, we compared the chemical compositions in the nuclei of NGC 3256, NGC 253, and Arp 220; these galactic nuclei have varying star formation efficiencies. Arp 220 shows higher abundances of SiO and HC3_3N than NGC 3256 and NGC 253. Abundances of most species do not show strong correlation with the star formation efficiencies, although the CH3_3CCH abundance seems to have a weak positive correlation with the star formation efficiency. Lastly, the chemistry of spiral arm positions in NGC 3256 is compared with that of W 51, a Galactic molecular cloud complex in a spiral arm. We found higher fractional abundances of shock tracers, and possibly also higher dense gas fraction in NGC 3256 compared with W 51.Comment: 54 pages, 19 figures. Accepted for publication in ApJ. Some extensive figures will only be shown online-only in the published versio
    • …
    corecore