30 research outputs found

    Optimizing Quantum Programs against Decoherence: Delaying Qubits into Quantum Superposition

    Full text link
    Quantum computing technology has reached a second renaissance in the last decade. However, in the NISQ era pointed out by John Preskill in 2018, quantum noise and decoherence, which affect the accuracy and execution effect of quantum programs, cannot be ignored and corrected by the near future NISQ computers. In order to let users more easily write quantum programs, the compiler and runtime system should consider underlying quantum hardware features such as decoherence. To address the challenges posed by decoherence, in this paper, we propose and prototype QLifeReducer to minimize the qubit lifetime in the input OpenQASM program by delaying qubits into quantum superposition. QLifeReducer includes three core modules, i.e.,the parser, parallelism analyzer and transformer. It introduces the layered bundle format to express the quantum program, where a set of parallelizable quantum operations is packaged into a bundle. We evaluate quantum programs before and after transformed by QLifeReducer on both real IBM Q 5 Tenerife and the self-developed simulator. The experimental results show that QLifeReducer reduces the error rate of a quantum program when executed on IBMQ 5 Tenerife by 11%; and can reduce the longest qubit lifetime as well as average qubit lifetime by more than 20% on most quantum workloads.Comment: To appear in TASE2019 - the 13th International Symposium on Theoretical Aspects of Software Engineering (submitted on Jan 25, 2019, and this is camera-ready version

    CODAR: A Contextual Duration-Aware Qubit Mapping for Various NISQ Devices

    Full text link
    Quantum computing devices in the NISQ era share common features and challenges like limited connectivity between qubits. Since two-qubit gates are allowed on limited qubit pairs, quantum compilers must transform original quantum programs to fit the hardware constraints. Previous works on qubit mapping assume different gates have the same execution duration, which limits them to explore the parallelism from the program. To address this drawback, we propose a Multi-architecture Adaptive Quantum Abstract Machine (maQAM) and a COntext-sensitive and Duration-Aware Remapping algorithm (CODAR). The CODAR remapper is aware of gate duration difference and program context, enabling it to extract more parallelism from programs and speed up the quantum programs by 1.23 in simulation on average in different architectures and maintain the fidelity of circuits when running on Origin Quantum noisy simulator.Comment: arXiv admin note: substantial text overlap with arXiv:2001.0688

    DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

    Full text link
    The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    QSynth artifact evaluation

    Full text link
    <p>QSynth's source code for POPL24 artifact evaluation. </p&gt

    A Fast Response Robust Deadbeat Predictive Current Control for Permanent Magnet Synchronous Motor

    Full text link
    Deadbeat predictive current control (DBPCC) has the characteristic of fast current response, but it is sensitive to motor parameters. Observer-based DBPCC can eliminate the steady state current tracking error when parameter mismatch exists. However, the actual current will deviate from the reference current during transient state in the case of inductance mismatch. In this paper, a fast response robust deadbeat predictive current control (FRRDBPCC) method is proposed for surface mounted permanent magnet synchronous motor (SPMSM). Firstly, the current tracking error caused by inductance mismatch during transient state is analyzed in detail. Then, an extended state observer (ESO) is proposed to estimate the lumped disturbance caused by parameter mismatch. Based on discrete time ESO, the predicted currents are used to replace the sampled currents to compensate for one-step delay caused by calculation and sampling. Furthermore, an online inductance identification algorithm and a modified prediction model are proposed. The dq-axis currents can be completely decoupled by updating the inductance in the modified prediction model online, ensuring that the current can track the reference value in two control periods. The proposed method improves robustness against parameter mismatch and guarantees dynamic response performance simultaneously. The experimental results verify the effectiveness of the proposed method

    Spatial Pattern of Water Footprints for Crop Production in Northeast China

    Full text link
    Water is an important resource for crop production; identifying the spatial pattern of the crop water footprint (WF) is of great significance for the optimization of water resource consumption and management in agricultural production. This study quantified the green, blue and grey water footprints (GWF, BWF and GRWF) and water consumption (GWC, BWC and GRWC) of rice, maize and soybean at the 1 km grid level and city level in Northeast China in 2019 based on the CROPWAT 8.0 model. The results showed that the average total water footprints of rice (TWFr), maize (TWFm) and soybean (TWFs) were 624.31 m3·ton−1, 527.26 m3·ton−1 and 1298.21 m3·ton−1, respectively. The spatial differences in the WF of each crop were obvious in Northeast China, with the highest values of TWFr mainly occurring in Baicheng, Dalian and Qitaihe; the highest TWFm values were mainly found in Baicheng, Yingkou and Hulundao, and the highest TWFs were mainly found in Baicheng, Chifeng and Tongliao. The total water consumption of all three crops (TWCc) in Northeast China was 94 billion m3·yr−1 (42% green, 26% blue and 32% grey), in which the total water consumption of maize production (TWCm) accounted for 60%. The production of rice, maize and soybean in Northeast China mainly depends on green water, grey water and blue water, respectively. Combining the results of the spatial patterns of crop TWF and TWC, the study revealed that the planting pattern of crops in Northeast China was relatively reasonable for sustainable water use. Meanwhile, cities that have the potential to enhance crop production and cities that should improve their water use efficiency and reduce fertilizer application were also identified
    corecore