58 research outputs found

    Evolution of the Giant Foresets Formation, northern Taranaki Basin, New Zealand

    Get PDF
    Plio-Pleistocene aggradation and progradation has resulted in the rapid outbuilding of the continental shelf margin, northern Taranaki Basin. Seismic reflection profiles reveal that this outbuilding is characterised by bold clinoforms which offlap in a basinward direction. This stacked succession of clinoforms, collectively termed the Giant Foresets Formation, obtains thicknesses of over 2 km in places, and has had a significant effect on the thermal regime of the region. This integrated study was initiated to document the Late Neogene evolution of this formation, and thereby gain insights on sedimentary distribution patterns, timing of sedimentation, and controls on progradation and aggradation. Latest Miocene extension in the northern Taranaki Basin, related to rotation of the Hikurangi subduction zone, greatly influenced sedimentation patterns in the Pliocene. Palinspastic reconstruction shows that initial extension of the Northern Graben occurred before Giant Foresets Formation sedimentation began. Sediment, sourced from erosion to the east, was preferentially funneled into the newly created Northern Graben during the late Miocene and early Pliocene, while areas to the north and west underwent a period of sediment starvation. During the late Pliocene, and into the Pleistocene, sediment accumulation outpaced graben extension, and by the end of the Mangapanian, the graben was overtopped. During this period, the progradational front associated with the outbuilding of the continental shelf-slope margin advanced northwards. Throughout the Nukumaruan, continuing to the present day, shelf migration was extremely rapid. While at least seven cyclical sea level changes, with an approximate periodicity of 400 ka (fourth-order) have been identified, overall, depths shallowed from dominantly bathyal, to dominantly shelfal

    Sequence stratigraphy and architectural elements of the Giant Foresets Formation, northern Taranaki Basin, New Zealand

    Get PDF
    The modern continental margin in northern Taranaki Basin is underlain by a thick, mud-dominated, Pliocene and Pleistocene succession (Giant Foresets Formation, GFF) clearly imaged in seismic reflection datasets. A study focusing on the geometry and internal reflection character of the GFF has revealed structural, sedimentological, and eustatic controls on its accumulation. Isopach maps prepared for northern Taranaki Basin show shifts through time in the main loci of sediment accumulation of the Mangaa Formation and Giant Foresets Formation. During the Early Pliocene (Opoitian Stage) deposition was focused in the southern part of the Northern Graben. The prograda¬tional front moved into the vicinity of Arawa-1 and Taimana-on the Western Platform during the early-Late Pliocene (Waipipian and Mangapanian Stages), forming large mounded slope fans. Through the latest Pliocene (Mangapanian - lower Nukumaruan Stages) the progradational front moved rapidly to the north and west through and across the Northern Graben to form a distinct shelf-slope depositional front. During the Pleistocene (upper Nukumaruan Stage – Recent), the progradational front straightened out, reaching the present position of the shelf-slope break. Even during the Pleistocene, broad subsidence persisted in the Northern Graben, trapping a proportion of the sediment flux being delivered to this part of the basin. The Late Pliocene part of the GFF, particularly where it prograded on to the Western Platform, displays classic clinoform profiles, with over steepening having resulted in mass-failure of paleoslopes. Major degradation of the shelf edge and slope occurred during the Early Pleistocene, reflecting a change in the calibre and flux of sediment sourced to the continental margin. Detailed examination of part of the GFF not significantly affected by mass-failure indicates that small-scale channel levee and overbank deposits dominate slope deposition, while basin floor deposits are characterised by slope-disconnected muddy and silty basin floor fans, with little lateral continuity between systems. In a sequence stratigraphic context, many of the dominant components of each seismic unit (slumps, fans, and channel-levee complexes) were deposited during the falling (RST) and low (LST) sea level parts of a relative sea level cycle, resulting in highly asymmetric sequences. While the GFF is considered to have minor reservoir potential in terms of containing sandstone-dominated stratigraphic traps, it does afford the opportunity to study in detail how deep-water clastic systems evolved in response to the various factors that control depositional architectures, particularly in a rapidly prograding muddy continen¬tal margin system

    New insights into the condensed nature and stratigraphic significance of the Late Neogene Ariki Formation, Taranaki Basin

    Get PDF
    The Ariki Formation is a distinctive Late Miocene – Early Pliocene marl facies rich in planktic foraminifera, reaching thicknesses in the range 70 - 109 m in most exploration holes drilled into the Western Platform northwest of Taranaki Peninsula. In Awatea-1 and Mangaa-1 in the Northern Graben, however, there are two marl units separated by the Mangaa “B” Sands. The lower unit has the same upper Tongaporutuan and Kapitean age as the lower part of the marl on the Western Platform, and the upper marl has an Upper Opoitian - Waipipian age, similar to the upper part of the Ariki Formation on the platform. In other holes located on the margins of the graben there can be one thin marly horizon, which usually correlates with the upper marl unit in Awatea-1 and Mangaa-1. The presence of two marly units in the Northern Graben, which are probably amalgamated on the western Platform, suggests two periods of late Neogene condensed sedimentation in northern Taranaki Basin arising from siliciclastic sediment starvation, separated by a period of submarine fan accumulation (Mangaa ‘B’ sands) following subsidence of the Northern Graben. We attribute the initial interval of marl accumulation mainly to a marked landward shift in the position of coastal onlap in central and southern Taranaki and in the region east of the Taranaki Fault Zone (southern King Country and northern Wanganui regions), which effectively shut-off the supply of siliciclastic sediment to northern Taranaki Basin, thereby enabling marl to accumulate. The start of accumulation of the upper part of the Ariki Formation and its marly correlatives in and around the Northern Graben, is attributed to a younger (upper Opoitian) landward shift in the position of coastal onlap, this time involving the formation of the Wanganui Basin depocentre and Toru Trough, which trapped the contemporary siliciclastic sediment being supplied from the south. A lower Opoitian phase of progradation between these two phases of retrogradation led to accumulation of the lower part of the Mangaa Formation (Mangaa ’B’ sands), which was limited in its extent to the Northern Graben because bounding normal faults had by then developed sea floor relief precluding mass-emplaced siliciclastic sediment from being deposited on the higher standing Western Platform. The accumulation of Ariki Formation marl in northern Taranaki Basin ended during the mid-Pliocene due to progradation of a thick continental margin wedge (Giant Foresets Formation) across the Northern Graben and Western Platform

    Rapid progradation of the Pliocene-Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications

    Get PDF
    Progradation and aggradation of the modern continental margin in northern Taranaki Basin has resulted in the deposition of a thick and rapidly accumulated Pliocene-Pleistocene sedimentary succession. It includes the predominantly muddy Giant Foresets Formation, and the underlying sandy Mangaa Formation. Investigation of the internal attributes and depositional systems associated with the Giant Foresets Formation suggests that it would provide very little effective reservoir for hydrocarbon accumulations, although it does provide essential seal and overburden properties. While the sand-dominated Mangaa Formation could be a hydrocarbon reservoir, drilling so far has yet to reveal any significant hydrocarbon shows. Undoubtedly the most significant contribution that the Giant Foresets and Mangaa Formations have had on petroleum systems in northern Taranaki Basin is the cumulative effect that rapid and substantial accumulation has had on maturation and migration of hydrocarbons in the underlying formations. Palinspastic restoration of a seismic reflection profile across the Northern Graben, together with isopach mapping of stratigraphic section for biostratigraphic stages, indicates that the thickest part of the Pliocene-Pleistocene succession is along the central axis of the Northern Graben. Deposition of this succession contributed substantially to subsidence within the graben, providing further accommodation for sediment accumulation. Isopach and structure contour maps also reveal the extent to which submarine volcanic massifs were exposed along the axis of the graben and the timing of movement on major faults

    Constraints on the evolution of Taranaki Fault from thermochronology and basin analysis: Implications for the Taranaki Fault play

    Get PDF
    Taranaki Fault is the major structure defining the eastern margin of Taranaki Basin and marks the juxtaposition of basement with the Late Cretaceous-Paleogene succession in the basin. Although the timing of the basement over-thrusting on Taranaki Fault and subsequent marine onlap on to the basement block are well constrained as having occurred during the Early Miocene, the age of formation of this major structure, its character, displacement history and associated regional vertical movement during the Late Cretaceous- Recent are otherwise poorly known. Here we have applied (i) apatite fission track thermochronology to Mesozoic basement encountered in exploration holes and in outcrop to constrain the amount and timing of Late Cretaceous-Eocene exhumation of the eastern side of the fault, (ii) basin analysis of the Oligocene and Miocene succession east of the fault to establish the late-Early Miocene - Early Pliocene subsidence history, and (iii), regional porosity-bulk density trends in Neogene mudstone to establish the late uplift and tilting of eastern Taranaki Basin margin, which may have been associated with the main period of charge of the underlying Taranaki Fault play. We make the following conclusions that may be useful in assessing the viability of the Taranaki Fault play. (1) Mid-Cretaceous Taniwha Formation, intersected in Te Ranga-1 was formerly extensive across the western half of the Kawhia Syncline between Port Waikato and Awakino. (2) Taranaki Fault first formed as a normalfault during the Late Cretaceous around 85Âą10 Ma, and formed the eastern boundary of the Taranaki Rift-Transform basin. (3) Manganui Fault, located onshore north of Awakino, formed as a steeply east dipping reverse fault and accommodated about four km of displacement during the mid-Cretaceous. (4) Uplift and erosion, involving inversion of Early Oligocene deposits, occurred along the Herangi High during the Late Oligocene. This may have been associated with initial reverse movement on Taranaki Fault. (5) During the Early Miocene (Otaian Stage) the Taranaki and Manganui Faults accommodated the westward transport of Murihiku basement into the eastern margin of Taranaki Basin, but the amount of topography generated over the Herangi High can only have been a few hundred metres in elevation. (6) The Altonian (19-16 Ma) marked the start of the collapse of the eastern margin of Taranaki Basin that lead during the Middle Miocene to the eastward retrogradation of the continental margin wedge into the King Country region. During the Late Miocene, from about 11 Ma, a thick shelf-slope continental margin wedge prograded northward into the King Country region and infilled it (Mt Messenger, Urenui, Kiore and Matemateaonga Formations). (7) During the Pliocene and Pleistocene the whole of central New Zealand, including the eastern margin of Taranaki Basin, became involved in long wavelength up-doming with 1-2 km erosion of much of the Neogene succession in the King Country region. This regionally elevated the Taranaki Fault play into which hydrocarbons may have migrated from the Northern Graben region

    Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand

    Get PDF
    Analysis of the stratigraphic architecture of the fills of Wanganui, King Country, and eastern Taranaki Basins reveals the occurrence of five 2nd order Late Paleocene and Neogene sequences of tectonic origin. The oldest is the late Eocene-Oligocene Te Kuiti Sequence, followed by the early-early Miocene (Otaian) Mahoenui Sequence, followed by the late-early Miocene (Altonian) Mokau Sequence, all three in King Country Basin. The fourth is the middle Miocene to early Pliocene Whangamomona Sequence, and the fifth is the middle Pliocene-Pleistocene Rangitikei Sequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th) with a eustatic origin occur particularly within the Whangamomona and Rangitikei Sequences, particularly those of 6th order with 41 000 yr periodicity

    Agreement of Immunoassay and Tandem Mass Spectrometry in the Analysis of Cortisol and Free T4: Interpretation and Implications for Clinicians

    Get PDF
    Objective. To quantify differences in results obtained by immunoassays (IAs) and tandem mass spectrometry (MSMS) for cortisol and free thyroxine (FT4). Design & Patients. Cortisol was measured over 60 minutes following a standard ACTH stimulation test (n = 80); FT4 was measured over time in two cohorts of pregnant (n = 57), and nonpregnant (n = 28) women. Measurements. Samples were analyzed with both IA and MSMS. Results. Results for cortisol by the two methods tended to agree, but agreement weakened over the 60-minute test and was worse for higher (more extreme) concentrations. The results for FT4 depended on the method. IA measurements tended to agree with MSMS measurements when values fell within "normal levels", but agreement was not constant across trimester in pregnant women and was poorest for the extreme (low/high) concentrations. Correlations between MSMS measurements and the difference between MSMS and IA results were strong and positive (0.411 < r < 0.823; all P < .05). Conclusions. IA and MSMS provide different measures of cortisol and FT4 at extreme levels, where clinical decision making requires the greatest precision. Agreement between the methods is inconsistent over time, is nonlinear, and varies with the analyte and concentrations. IA-based measurements may lead to erroneous clinical decisions

    Statistical Multiplicity in Systematic Reviews of Anaesthesia Interventions: A Quantification and Comparison between Cochrane and Non-Cochrane Reviews

    Get PDF
    BACKGROUND: Systematic reviews with meta-analyses often contain many statistical tests. This multiplicity may increase the risk of type I error. Few attempts have been made to address the problem of statistical multiplicity in systematic reviews. Before the implications are properly considered, the size of the issue deserves clarification. Because of the emphasis on bias evaluation and because of the editorial processes involved, Cochrane reviews may contain more multiplicity than their non-Cochrane counterparts. This study measured the quantity of statistical multiplicity present in a population of systematic reviews and aimed to assess whether this quantity is different in Cochrane and non-Cochrane reviews. METHODS/PRINCIPAL FINDINGS: We selected all the systematic reviews published by the Cochrane Anaesthesia Review Group containing a meta-analysis and matched them with comparable non-Cochrane reviews. We counted the number of statistical tests done in each systematic review. The median number of tests overall was 10 (interquartile range (IQR) 6 to 18). The median was 12 in Cochrane and 8 in non-Cochrane reviews (difference in medians 4 (95% confidence interval (CI) 2.0-19.0). The proportion that used an assessment of risk of bias as a reason for doing extra analyses was 42% in Cochrane and 28% in non-Cochrane reviews (difference in proportions 14% (95% CI -8 to 36). The issue of multiplicity was addressed in 6% of all the reviews. CONCLUSION/SIGNIFICANCE: Statistical multiplicity in systematic reviews requires attention. We found more multiplicity in Cochrane reviews than in non-Cochrane reviews. Many of the reasons for the increase in multiplicity may well represent improved methodological approaches and greater transparency, but multiplicity may also cause an increased risk of spurious conclusions. Few systematic reviews, whether Cochrane or non-Cochrane, address the issue of multiplicity
    • …
    corecore