654 research outputs found
Cosmological constant, violation of cosmological isotropy and CMB
We suggest that the solution to the cosmological vacuum energy puzzle does
not require any new field beyond the standard model, but rather can be
explained as a result of the interaction of the infrared sector of the
effective theory of gravity with standard model fields. The cosmological
constant in this framework can be presented in terms of QCD parameters and the
Hubble constant as follows, \epsilon_{vac} \sim H \cdot m_q\la\bar{q}q\ra
/m_{\eta'} \sim (4.3\cdot 10^{-3} \text{eV})^4, which is amazingly close to
the observed value today. In this work we explain how this proposal can be
tested by analyzing CMB data. In particular, knowing the value of the observed
cosmological constant fixes univocally the smallest size of the spatially flat,
constant time 3d hypersurface which, for instance in the case of an effective
1-torus, is predicted to be around 74 Gpc. We also comment on another important
prediction of this framework which is a violation of cosmological isotropy.
Such anisotropy is indeed apparently observed by WMAP, and will be confirmed
(or ruled out) by future PLANCK data.Comment: uses revtex4 - v2 as publishe
The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models
In (Hansen et al. 2002) we presented a new approach for measuring
non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern,
based on the multivariate empirical distribution function of the spherical
harmonics a_lm of a CMB map. The present paper builds upon the same ideas and
proposes several improvements and extensions. More precisely, we exploit the
additional information on the random phases of the a_lm to provide further
tests based on the empirical distribution function. Also we take advantage of
the effect of rotations in improving the power of our procedures. The suggested
tests are implemented on physically motivated models of non-Gaussian fields;
Monte-Carlo simulations suggest that this approach may be very promising in the
analysis of non-Gaussianity generated by non-standard models of inflation. We
address also some experimentally meaningful situations, such as the presence of
instrumental noise and a galactic cut in the map.Comment: 15 pages, 6 figures, submitted to Phys. Rev.
Can residuals of the Solar system foreground explain low multipole anomalies of the CMB ?
The low multipole anomalies of the Cosmic Microwave Background has received
much attention during the last few years. It is still not ascertained whether
these anomalies are indeed primordial or the result of systematics or
foregrounds. An example of a foreground, which could generate some non-Gaussian
and statistically anisotropic features at low multipole range, is the very
symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon
the methods presented by Maris et al. (2011), we investigate the contributions
from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can
minimize the contrast in power between even and odd multipoles in the CMB,
discussed discussed by Kim & Naselsky (2010). We submit our KBO de-correlated
CMB signal to several tests, to analyze its validity, and find that
incorporation of the KBO emission can decrease the quadrupole-octupole
alignment and parity asymmetry problems, provided that the KBO signals has a
non-cosmological dipole modulation, associated with the statistical anisotropy
of the ILC 7 map. Additionally, we show that the amplitude of the dipole
modulation, within a 2 sigma interval, is in agreement with the corresponding
amplitudes, discussed by Lew (2008).Comment: 24 pages, 9 figures, 5 tables. Matches version in JCA
Perturbations in electromagnetic dark energy
It has been recently proposed that the presence of a temporal electromagnetic
field on cosmological scales could explain the phase of accelerated expansion
that the universe is currently undergoing. The field contributes as a
cosmological constant and therefore, the homogeneous cosmology produced by such
a model is exactly the same as that of CDM. However, unlike a
cosmological constant term, electromagnetic fields can acquire perturbations
which in principle could affect CMB anisotropies and structure formation. In
this work, we study the evolution of inhomogeneous scalar perturbations in this
model. We show that provided the initial electromagnetic fluctuations generated
during inflation are small, the model is perfectly compatible with both CMB and
large scale structure observations at the same level of accuracy as
CDM.Comment: 12 pages, 3 figures. Added new comments to match the published
versio
Temperature and Polarization Patterns in Anisotropic Cosmologies
We study the coherent temperature and polarization patterns produced in
homogeneous but anisotropic cosmological models. We show results for all
Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V,
VII, VII and IX) to illustrate the range of possible behaviour. We
discuss the role of spatial curvature, shear and rotation in the geodesic
equations for each model and establish some basic results concerning the
symmetries of the patterns produced. We also give examples of the
time-evolution of these patterns in terms of the Stokes parameters , and
.Comment: 24 pages, 7 Figures, submitted to JCAP. Revised version: numerous
references added, text rewritten, and errors corrected
Can a supernova be located by its neutrinos?
A future core-collapse supernova in our Galaxy will be detected by several
neutrino detectors around the world. The neutrinos escape from the supernova
core over several seconds from the time of collapse, unlike the electromagnetic
radiation, emitted from the envelope, which is delayed by a time of order
hours. In addition, the electromagnetic radiation can be obscured by dust in
the intervening interstellar space. The question therefore arises whether a
supernova can be located by its neutrinos alone. The early warning of a
supernova and its location might allow greatly improved astronomical
observations. The theme of the present work is a careful and realistic
assessment of this question, taking into account the statistical significance
of the various neutrino signals. Not surprisingly, neutrino-electron forward
scattering leads to a good determination of the supernova direction, even in
the presence of the large and nearly isotropic background from other reactions.
Even with the most pessimistic background assumptions, SuperKamiokande (SK) and
the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to
be within circles of radius and , respectively. Other
reactions with more events but weaker angular dependence are much less useful
for locating the supernova. Finally, there is the oft-discussed possibility of
triangulation, i.e., determination of the supernova direction based on an
arrival time delay between different detectors. Given the expected statistics
we show that, contrary to previous estimates, this technique does not allow a
good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds
some brief comment
Search for non-Gaussianity in pixel, harmonic and wavelet space: compared and combined
We present a comparison between three approaches to test non-Gaussianity of
cosmic microwave background data. The Minkowski functionals, the empirical
process method and the skewness of wavelet coefficients are applied to maps
generated from non-standard inflationary models and to Gaussian maps with point
sources included. We discuss the different power of the pixel, harmonic and
wavelet space methods on these simulated almost full-sky data (with Planck like
noise). We also suggest a new procedure consisting of a combination of
statistics in pixel, harmonic and wavelet space.Comment: Accepted for publication in PR
Constraints on cosmic hemispherical power anomalies from quasars
Recent analyses of the cosmic microwave background (CMB) maps from the WMAP
satellite have uncovered evidence for a hemispherical power anomaly, i.e. a
dipole modulation of the CMB power spectrum at large angular scales with an
amplitude of +/-14 percent. Erickcek et al have put forward an inflationary
model to explain this anomaly. Their scenario is a variation on the curvaton
scenario in which the curvaton possesses a large-scale spatial gradient that
modulates the amplitude of CMB fluctuations. We show that this scenario would
also lead to a spatial gradient in the amplitude of perturbations sigma_8, and
hence to a dipole asymmetry in any highly biased tracer of the underlying
density field. Using the high-redshift quasars from the Sloan Digital Sky
Survey, we find an upper limit on such a gradient of |nabla
sigma_8|/sigma_8<0.027/r_{lss} (99% posterior probability), where r_{lss} is
the comoving distance to the last-scattering surface. This rules out the
simplest version of the curvaton spatial gradient scenario.Comment: matches JCAP accepted version (minor revisions
Foreground removal from CMB temperature maps using an MLP neural network
One of the main obstacles in extracting the Cosmic Microwave Background (CMB)
signal from observations in the mm-submm range is the foreground contamination
by emission from galactic components: mainly synchrotron, free-free and thermal
dust emission. Due to the statistical nature of the intrinsic CMB signal it is
essential to minimize the systematic errors in the CMB temperature
determinations. Following the available knowledge of the spectral behavior of
the galactic foregrounds simple, power law-like spectra have been assumed. The
feasibility of using a simple neural network for extracting the CMB temperature
signal from the combined CMB and foreground signals has been investigated. As a
specific example, we have analysed simulated data, like that expected from the
ESA Planck Surveyor mission. A simple multilayer perceptron neural network with
2 hidden layers can provide temperature estimates, over more than 80 percent of
the sky, that are to a high degree uncorrelated with the foreground signals. A
single network will be able to cover the dynamic range of the Planck noise
level over the entire sky.Comment: Accepted for publication in Astrophysics and Space Scienc
- …