1 research outputs found
A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time
Interval Temporal Logic (ITL) is an established temporal formalism for
reasoning about time periods. For over 25 years, it has been applied in a
number of ways and several ITL variants, axiom systems and tools have been
investigated. We solve the longstanding open problem of finding a complete
axiom system for basic quantifier-free propositional ITL (PITL) with infinite
time for analysing nonterminating computational systems. Our completeness proof
uses a reduction to completeness for PITL with finite time and conventional
propositional linear-time temporal logic. Unlike completeness proofs of equally
expressive logics with nonelementary computational complexity, our semantic
approach does not use tableaux, subformula closures or explicit deductions
involving encodings of omega automata and nontrivial techniques for
complementing them. We believe that our result also provides evidence of the
naturalness of interval-based reasoning