61 research outputs found
Why We Need a Ruminant Revolution: Combating Malnutrition and Metabolic Illnesses to Enable Sustainable Development
Animal source foods (ASF) are essential for proper human development and function. Livestock in general, and ruminants in particular, are essential components of our sustainable global food systems. Of significant worldwide impact, diets with higher-than-recommended levels of ASF can correct the symptoms of metabolic illnesses, offering hope in arresting the current worldwide epidemic of diabetes and other metabolic diseases. Most dietary policy and recommendations are based on the ill-founded belief that plant-based, high-carbohydrate diets are “healthy.” High-quality scientific evidence does not support the belief that vegetarian diets are healthier than omnivorous or animal-based diets. A Therapeutic Carbohydrate Reduction (TCR) lifestyle approach has demonstrated its efficacy in reversing Insulin Resistance (IR) and the non-communicable diseases associated with, or caused, by it. True sustainability is a multifaceted topic consisting of societal, economic, and ecological aspects. The enormous suffering and financial costs of chronic illness must be acknowledged. The production of high-quality animal protein and animal fat by ruminants from feed resources humans cannot directly utilize will be fundamental to feeding a growing population. This essential food production can preserve and enhance the diverse environments where it takes place. We need a revolution in our thinking of what constitutes a healthy diet, of what causes chronic illness, of the vital role that animal product play in the human diet, and the essential nature of ruminant animal agriculture in meeting humanity’s needs. This will mean overthrowing established policies and institutions, and confronting vested belief systems. We’ll need an effort, analogous to the Green Revolution, to develop and deploy the knowledge and technology necessary to meet the needs of the mid-21st Century world
Computer-Based Forage Management Tools: Historical, Current, and Future Applications
Forage management has been an important human activity since the beginning of civilization. By comparison, the personal computer has been available only in the immediate past. The software developed to deal with the complexity of climate, soil, plant, animal, and socioeconomic factors has seen huge changes in a few decades. Mainframe computers facilitated numerical calculations for exploring relationships among dozens of variables. Personal computers opened the door for more individual scientist creativity and routine communication. Web-based communication globalised the option for multidisciplinary teams to tackle problems. Forage-related computer applications abound, allowing farmers, ranchers, and others to more effectively manage the land. This paper describes historical, current, and future computer-based applications that improve understanding and efficiency leading to more economically and environmentally sustainable forage-livestock systems
Using Recurrent Phenotypical Selection to Improve Drought Tolerance of Red Clover
Red clover is one of the most important forage legumes in the world. It is utilized extensively in European and North American farming systems. Approximately, 4 million hectares of red clover are grown globally each year for forage production, soil improvement, and as a pollen and nectar source for pollinators (Riday, 2010). In North America, red clover is widely used in temperate regions for pasture, hay, and silage in combination with grasses for soil improvement and as a pollen and nectar source for bumblebees (Bombus). In the northwest, it is also grown for seed production (Anderson et al., 2016) with Oregon farmers producing 89 % of the US total (USDA-NASS, 2019). Drought stress conditions negatively affect the productivity of red clover, therefore, developing red clover cultivars that are highly tolerant to drought is needed for changing climatic conditions. The main objective of this study was to select red clover germplasm with improved drought tolerance and to subsequently develop commercial cultivars with higher herbage accummulation and persistence when grown in low soil moisture conditions
GIS-Based Forage Species Adaptation Mapping
Selecting forage crops adapted to the climatic and edaphic conditions of specific locations is essential for economic sustainability and environmental protection. Yet, currently, proper selection is difficult due to the absence of advanced selection tools. Significant improvements are being made in the process through Geographic Information System (GIS)-based mapping. Climate and soil GIS layers are being matched with forage characteristics through rules describing species tolerances. Better matching will reduce economic risks and environmental hazards associated with sub-optimal crop selection and subsequent performance. Once developed, these forage crop selection strategies and tools can be adapted for use with other crops. A matrix of species characteristics is being assembled for 6 major forage crops. GIS-based climate and soils maps are being developed and reviewed. Base layer climate and soils maps and the species adaptation maps will be placed on a CD-ROM to help educators, consultants, farmers, and ranchers match their conditions to suitable forage crop species. A WWW segment is being developed to provide a source of current information and links to original data and supplementary materials
A GIS Tool for Optimal Forage Species Selection
To determine appropriate forage species for US ecoregions, geographic information technologies (GIS) are being used to create climatic and soil factor maps. Excel spreadsheets and RStudio are used to create response functions of forage species to minimum and maximum temperature, annual precipitation, soil pH, soil salinity, and salinity. National forage data and expert opinion will evaluate quantitative tolerances, seasonal yield profiles, and pollinator suitability. These maps and agronomic and livestock use information will be shared with forage specialists and farmers to provide alternatives for improved perenniality, increased diversity, and system circularity. Future work will include development and evaluation of climate change scenarios for temperature and precipitation. Anticipated outcomes include improved species selection and decision making to develop and manage sustainable agricultural systems, improved national policies to provide incentives for agroecologically-matched agricultural systems, and improved likelihood of long-term agricultural production sustainability based on agroecological principles
Recommended from our members
Alfalfa hay quality survey
Published June 1981. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
Recommended from our members
Environmental limitation mapping of potential biomass resources across the conterminous United States
Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long-term production potentials in the United states. Such information is a starting point for planners and economic modelers, and there is a need for this spatial information to be developed in a consistent manner for a variety of crops, so that their production potentials can be intercompared to support crop selection decisions. As part of the Sun Grant Regional Feedstock Partnership (RFP), an approach to mapping these potential biomass resources was developed to take advantage of the informational synergy realized when bringing together coordinated field trials, close interaction with expert agronomists, and spatial modeling into a single, collaborative effort. A modeling and mapping system called PRISM-ELM was designed to answer a basic question: How do climate and soil characteristics affect the spatial distribution and long-term production patterns of a given crop? This empirical/mechanistic/biogeographical hybrid model employs a limiting factor approach, where productivity is determined by the most limiting of the factors addressed in submodels that simulate water balance, winter low-temperature response, summer high-temperature response, and soil pH, salinity, and drainage. Yield maps are developed through linear regressions relating soil and climate attributes to reported yield data. The model was parameterized and validated using grain yield data for winter wheat and maize, which served as benchmarks for parameterizing the model for upland and lowland switchgrass, CRP grasses, Miscanthus, biomass sorghum, energycane, willow, and poplar. The resulting maps served as potential production inputs to analyses comparing the viability of biomass crops under various economic scenarios. The modeling and parameterization framework can be expanded to include other biomass crops
Creating an International Forage and Grasslands Curriculum
Grasslands cover nearly 2/3 of the land masses of the world and make up 1/4 of the earth\u27s surface. Although various regions of the world have different names for their grasslands, common management principles govern maintaining and improving these lands for the food production and environmental services they provide. There is much talk today about “finding the balance between environmental protection and economic development” but there is little evidence of knowledge about grassland ecosystems being translated into effectively implemented policies designed to restore degraded grasslands. In contrast, there are many examples of the tragic consequences of economic development rather than biological capacity driving decision-making. Historically, people were connected with the land and understood the soil, plant, animal, human “circle of life.” This understanding led to appropriate management. Today, the vast majority of the developed world has little understanding of these natural processes and increasing percentages of the developing world live in cities and are disconnected from the natural ecosystems that service them. Even those few studying agricultural sciences have little appreciation for the scope and diversity of grasslands present in the world. Far fewer have an understanding of the importance of grasslands management principles and needed supporting policies. Thus, there is a need for teaching materials that can be used worldwide to convey the importance and proper management of grasslands and forage-livestock systems
Recommended from our members
Irrigated clover-grass pastures : eastern Oregon -- east of Cascades [2000]
Revised May 1983. Reprinted January 2000. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
- …