4 research outputs found

    Trans-Planckian wimpzillas

    Get PDF
    Two previously proposed conjectures--gravitational trans-Planckian particle creation in the expanding universe, and the existence of ultra-heavy stable particles with masses up to the Planck scale (wimpzillas)--are combined in a proposal for trans-Planckian particle creation of wimpzillas. This new scenario leads to a huge enhancement in their production compared to mechanisms put forward earlier. As a result, it requires the trans-Planckian particle creation parameter to be rather small to avoid overproduction of such particles, much less than that is required for observable effects in the primordial perturbation spectrum. This ensures also that wimpzillas are mainly created at the end of primordial inflation. Conditions under which trans-Planckian wimpzillas can constitute the present dark matter are determined.Comment: Replaced with the version to be published in JCAP. Division into sections introduced, discussion expanded, references added, conclusions unchange

    Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP Dataset

    Get PDF
    We study the constraints on the inflationary parameter space derived from the 3 year WMAP dataset using ``slow roll reconstruction'', using the SDSS galaxy power spectrum to gain further leverage where appropriate. This approach inserts the inflationary slow roll parameters directly into a Monte Carlo Markov chain estimate of the cosmological parameters, and uses the inflationary flow hierarchy to compute the parameters' scale-dependence. We work with the first three parameters (epsilon, eta and xi) and pay close attention to the possibility that the 3 year WMAP dataset contains evidence for a ``running'' spectral index, which is dominated by the xi term. Mirroring the WMAP team's analysis we find that the permitted distribution of xi is broad, and centered away from zero. However, when we require that inflationary parameters yield at least 30 additional e-folds of inflation after the largest observable scales leave the horizon, the bounds on xi tighten dramatically. We make use of the absence of an explicit pivot scale in the slow roll reconstruction formalism to determine the dependence of the computed parameter distributions on the pivot. We show that the choice of pivot has a significant effect on the inferred constraints on the inflationary variables, and the spectral index and running derived from them. Finally, we argue that the next round of cosmological data can be expected to place very stringent constraints on the region of parameter space open to single field models of slow roll inflation.Comment: 26 pages, 11 figures, JHEP format. v2: version accepted by JCAP: minor clarifications and references added, 1 figure added, v3: 1 reference adde

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Large Non-Gaussianities in Single Field Inflation

    Get PDF
    We compute the 3-point correlation function for a general model of inflation driven by a single, minimally coupled scalar field. Our approach is based on the numerical evaluation of both the perturbation equations and the integrals which contribute to the 3-point function. Consequently, we can analyze models where the potential has a "feature", in the vicinity of which the slow roll parameters may take on large, transient values. This introduces both scale and shape dependent non-Gaussianities into the primordial perturbations. As an example of our methodology, we examine the ``step'' potentials which have been invoked to improve the fit to the glitch in the ClC_l for l∌30l \sim 30, present in both the one and three year WMAP data sets. We show that for the typical parameter values, the non-Gaussianities associated with the step are far larger than those in standard slow roll inflation, and may even be within reach of a next generation CMB experiment such as Planck. More generally, we use this example to explain that while adding features to potential can improve the fit to the 2-point function, these are generically associated with a greatly enhanced signal at the 3-point level. Moreover, this 3-point signal will have a very nontrivial shape and scale dependence, which is correlated with the form of the 2-point function, and may thus lead to a consistency check on the models of inflation with non-smooth potentials.Comment: 23 pages JHEP-style, 7 Figures. Updated with improved results. Accepted for publication by JCA
    corecore