2,290 research outputs found
Thematic Issue on the Hydrological Effects of the Vegetation-Soil Complex
Peer reviewedPublisher PD
Soil moisture content measurement using optical fiber long period gratings
The use of an optical fibre long period grating (LPG) as a soil moisture sensor is reported. Characterization of the device in both clay and sandy soils revealed a sensitivity to moisture levels in the range 10-50%, and the results were compared with the output from a Theta probe, the standard soil moisture sensor, which measures the impedance of the soil. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Lead acid battery recycling for the twenty-first century
There is a growing need to develop novel processes to recover lead from end-of-life lead-acid batteries, due to increasing energy costs of pyrometallurgical lead recovery, the resulting CO2 emissions and the catastrophic health implications of lead exposure from lead-to-air emissions. To address these issues, we are developing an iono-metallurgical process, aiming to displace the pyrometallurgical process that has dominated lead production for millennia. The proposed process involves the dissolution of Pb salts into the deep eutectic solvent (DES) Ethaline 200, a liquid formed when a 1 : 2 molar ratio of choline chloride and ethylene glycol are mixed together. Once dissolved, the Pb can be recovered through electrodeposition and the liquid can then be recycled for further Pb recycling. Firstly, DESs are being used to dissolve the lead compounds (PbCO3, PbO, PbO2 and PbSO4) involved and their solubilities measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The resulting Pb2+ species are then reduced and electrodeposited as elemental lead at the cathode of an electrochemical cell; cyclic voltammetry and chronoamperometry are being used to determine the electrodeposition behaviour and mechanism. The electrodeposited films were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). We discuss the implications and opportunities of such processes
Interactive effects of low molecular weight carbon compounds on N2O emissions
Low molecular weight carbon (C) compounds in hotspots such as the rhizosphere can greatly affect nitrate reduction processes. Towards a better prediction of N2O emission from denitrification, we are still lacking understanding of responses to the supply of complex C compound mixtures such as rhizodeposits versus the often examined response to individually amended C compounds. In a laboratory study, we applied three C compounds, glucose, citric acid and glutamic acid, individually or as a three-compound mixture to 14NH415NO3 amended soil at 80% water-filled pore space. For the individual C compound treatments, the substrateswere enriched in 13C-C. The mixture was enriched in 13C-C either in all constituent compounds or in one of the compounds only, resulting in four different treatments. This set-up enabled quantification of the utilization of each compound for heterotrophic respiration when applied individually and in combination, and for this to be related to the dynamics of 15N-NO3- reduction to 15N-N2O. The total 15N-N2O emission from the compound mixture over 10 days was similar to the total emission predicted from the average of the individual compound treatments This could suggest potential predictability of denitrification responses to complex mixtures of C based on knowledge of its constituents. However, immediate and simultaneous peaks of 15N-N2O and 13C-CO2 fluxes from the compound mixture contrasted with observed delays in 15N-N2O and 13C-CO2 fluxes when the compounds had been applied individually. Moreover, relative contributions of the C compounds to 13C-CO2 respiration from the compound mixture were different from the predicted contributions based on their individual application. While contributions of glutamic acid-C and citric acid-C to respiration in mixture during peak 15N-N2O emission were increased, glucose utilization in the mixture treatment was significantly lower. These findings give a glimpse of the challenges we are facing when trying to predict nitrate reduction occurring in the rhizosphere where interactions between C compounds and the soil matrix, as well as within the wider heterotrophic community, determine process rates. Given that most of our understanding of the role of C in regulating nitrate reduction, is informed from single compound studies, we require more evidence on the effects and innate interactions of compound mixtures to be able to predict responses to C sources
Investigating the timecourse of accessing conversational implicatures during incremental sentence interpretation
Many contextual inferences in utterance interpretation are explained as following from the nature of conversation and the assumption that participants are rational. Recent psycholinguistic research has focussed on certain of these ‘Gricean’ inferences and have revealed that comprehenders can access them in online interpretation. However there have been mixed results as to the time-course of access. Some results show that Gricean inferences can be accessed very rapidly, as rapidly as any other contextually specified information (Sedivy, 2003; Grodner, Klein, Carbery, & Tanenhaus, 2010); while other studies looking at the same kind of inference suggest that access to Gricean inferences are delayed relative to other aspects of semantic interpretation (Huang & Snedeker, 2009; in press). While previous timecourse research has focussed on Gricean inferences that support the online assignment of reference to definite expressions, the study reported here examines the timecourse of access to scalar implicatures, which enrich the meaning of an utterance beyond the semantic interpretation. Even if access to Gricean inference in support of reference assignment may be rapid, it is still unknown whether genuinely enriching scalar implicatures are delayed. Our results indicate that scalar implicatures are accessed as rapidly as other contextual inferences. The implications of our results are discussed in reference to the architecture of language comprehension
Investigation of the chemocatalytic and biocatalytic valorization of a range of different lignin preparations: The importance of β-O-4 content
A set of seven different lignin preparations was generated from a range of organosolv (acidic, alkaline, ammonia-treated, and dioxane-based), ionic liquid, autohydrolysis, and Kraft pretreatments of lignocelluloses. Each lignin was characterized by 2D HSQC NMR spectroscopy, showing significant variability in the β-O-4 content of the different lignin samples. Each lignin was then valorised using three biocatalytic methods (microbial biotransformation with Rhodococcus jostii RHA045, treatment with Pseudomonas fluorescens Dyp1B or Sphingobacterium sp. T2 manganese superoxide dismutase) and two chemocatalytic methods (catalytic hydrogenation using Pt/alumina catalyst, DDQ benzylic oxidation/Zn reduction). Highest product yields for DDQ/Zn valorization were observed from poplar ammonia percolation-organosolv lignin, which had the highest β-O-4 content of the investigated lignins and also gave the highest yield of syringaldehyde (243 mg L -1 ) when using R. jostii RHA045 and the most enzymatic products using P. fluorescens Dyp1B. The highest product yield from the Pt/alumina hydrogenation was observed using oak dioxasolv lignin, which also had a high β-O-4 content. In general, highest product yields for both chemocatalytic and biocatalytic valorization methods were obtained from preparations that showed highest β-O-4 content, while variable yields were obtained with preparations containing intermediate β-O-4 content, and little or no product was obtained with preparations containing low β-O-4 content
Recommended from our members
Matching roots to their environment
Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilisers.
● Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future
The effect of root exudates on rhizosphere water dynamics
L.J.C. and N.K. are funded by BBSRC SARISA BB/L025620/1, L.J.C. is also funded by EPSRC EP/P020887/1. K.R.D. is funded by ERC 646809DIMR. P.D.H. and T.S.G. are funded by BBSRC BB/J00868/1. The James Hutton Institute receives funding from the Scottish Government. T.R. is funded by BBSRC SARISA BB/L025620/1, EPSRC EP/M020355/1, ERC 646809DIMR, BBSRC SARIC BB/P004180/1 and NERC NE/L00237/1. Data supporting this study are available on request from the University of Southampton repository at https://doi.org/10.5258/SOTON/D0609 [35].Peer reviewedPublisher PD
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
- …