51 research outputs found

    Inducible Nitric Oxide Synthase Provides Protection Against Injury-Induced Thrombosis in Female Mice

    Get PDF
    Nitric oxide (NO) is an important vasoactive molecule produced by three NO synthase (NOS) enzymes: neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). While eNOS contributes to blood vessel dilation that is generally thought to protect against the development of hypertension, iNOS has been primarily implicated as a disease-promoting isoform leading to protein-bound 3-nitrotyrosine formation in aortic lesions and select organs during atherogenesis. Despite this, iNOS may also play a physiological role, via the modulation of cyclooxygenase and thromboregulatory eicosanoid production. Herein, we examined the role of iNOS in a murine model of thrombosis. Blood flow was measured in carotid arteries of male and female wild-type (WT) and iNOS-deficient mice following ferric chloride-induced thrombosis. Female WT mice were less susceptible to thrombotic occlusion than male counterparts, but this protection was lost upon iNOS deletion. In contrast, male mice (with and without iNOS deletion) were equally susceptible to thrombosis. The protective effect that iNOS affords female WT mice was not associated with a change in the balance of thromboxane A2 (TxA2) and antithrombotic prostacyclin (PGI2). Our findings, however, suggest that iNOS generates a protective source of NO in female WT mice that attenuates the effects of vascular injury. Thus, although iNOS is likely detrimental during atherogenesis, physiological iNOS levels may play a protective role in preventing thrombotic occlusion, a phenomenon that may be enhanced in female mice

    The Annexin A2/S100A10 System in Health and Disease: Emerging Paradigms

    Get PDF
    Since its discovery as a src kinase substrate more than three decades ago, appreciation for the physiologic functions of annexin A2 and its associated proteins has increased dramatically. With its binding partner S100A10 (p11), A2 forms a cell surface complex that regulates generation of the primary fibrinolytic protease, plasmin, and is dynamically regulated in settings of hemostasis and thrombosis. In addition, the complex is transcriptionally upregulated in hypoxia and promotes pathologic neoangiogenesis in the tissues such as the retina. Dysregulation of both A2 and p11 has been reported in examples of rodent and human cancer. Intracellularly, A2 plays a critical role in endosomal repair in postarthroplastic osteolysis, and intracellular p11 regulates serotonin receptor activity in psychiatric mood disorders. In human studies, the A2 system contributes to the coagulopathy of acute promyelocytic leukemia, and is a target of high-titer autoantibodies in patients with antiphospholipid syndrome, cerebral thrombosis, and possibly preeclampsia. Polymorphisms in the human ANXA2 gene have been associated with stroke and avascular osteonecrosis of bone, two severe complications of sickle cell disease. Together, these new findings suggest that manipulation of the annexin A2/S100A10 system may offer promising new avenues for treatment of a spectrum of human disorders

    Cellular Receptors in the Regulation of Plasmin Generation

    No full text

    Aaron J. Marcus: in pursuit of perfection

    No full text

    Annexin A2 in Inflammation and Host Defense

    No full text
    Annexin A2 (AnxA2) is a multifunctional calcium2+ (Ca2+) and phospholipid-binding protein that is expressed in a wide spectrum of cells, including those participating in the inflammatory response. In acute inflammation, the interaction of AnxA2 with actin and adherens junction VE-cadherins underlies its role in regulating vascular integrity. In addition, its contribution to endosomal membrane repair impacts several aspects of inflammatory regulation, including lysosome repair, which regulates inflammasome activation, and autophagosome biogenesis, which is essential for macroautophagy. On the other hand, AnxA2 may be co-opted to promote adhesion, entry, and propagation of bacteria or viruses into host cells. In the later stages of acute inflammation, AnxA2 contributes to the initiation of angiogenesis, which promotes tissue repair, but, when dysregulated, may also accompany chronic inflammation. AnxA2 is overexpressed in malignancies, such as breast cancer and glioblastoma, and likely contributes to cancer progression in the context of an inflammatory microenvironment. We conclude that annexin AnxA2 normally fulfills a spectrum of anti-inflammatory functions in the setting of both acute and chronic inflammation but may contribute to disease states in settings of disordered homeostasis

    Annexin A2 in Fibrinolysis, Inflammation and Fibrosis

    No full text
    As a cell surface tissue plasminogen activator (tPA)-plasminogen receptor, the annexin A2 (A2) complex facilitates plasmin generation on the endothelial cell surface, and is an established regulator of hemostasis. Whereas A2 is overexpressed in hemorrhagic disease such as acute promyelocytic leukemia, its underexpression or impairment may result in thrombosis, as in antiphospholipid syndrome, venous thromboembolism, or atherosclerosis. Within immune response cells, A2 orchestrates membrane repair, vesicle fusion, and cytoskeletal organization, thus playing a critical role in inflammatory response and tissue injury. Dysregulation of A2 is evident in multiple human disorders, and may contribute to the pathogenesis of various inflammatory disorders. The fibrinolytic system, moreover, is central to wound healing through its ability to remodel the provisional matrix and promote angiogenesis. A2 dysfunction may also promote tissue fibrogenesis and end-organ fibrosis

    The annexin A2 system and angiogenesis

    No full text
    • …
    corecore