999 research outputs found

    Deep Learning based Fingerprint Presentation Attack Detection: A Comprehensive Survey

    Full text link
    The vulnerabilities of fingerprint authentication systems have raised security concerns when adapting them to highly secure access-control applications. Therefore, Fingerprint Presentation Attack Detection (FPAD) methods are essential for ensuring reliable fingerprint authentication. Owing to the lack of generation capacity of traditional handcrafted based approaches, deep learning-based FPAD has become mainstream and has achieved remarkable performance in the past decade. Existing reviews have focused more on hand-cratfed rather than deep learning-based methods, which are outdated. To stimulate future research, we will concentrate only on recent deep-learning-based FPAD methods. In this paper, we first briefly introduce the most common Presentation Attack Instruments (PAIs) and publicly available fingerprint Presentation Attack (PA) datasets. We then describe the existing deep-learning FPAD by categorizing them into contact, contactless, and smartphone-based approaches. Finally, we conclude the paper by discussing the open challenges at the current stage and emphasizing the potential future perspective.Comment: 29 pages, submitted to ACM computing survey journa

    Power-Efficient Radio Resource Allocation for Low-Medium -Altitude Aerial Platform Based TD-LTE Networks

    No full text
    In order to provide an increased capacity, throughput and QoS guarantee for terrestrial users in emergency scenarios, a low-medium-altitude aerial platform based time-division-duplex long term evolution (TD-LTE) system referred to as Aerial LTE, is presented in this paper. Additionally a power-efficient radio resource allocation mechanism is proposed for both the Aerial LTE downlink and uplink, which is modeled as a cooperative game. Our simulation results demonstrate that the proposed algorithm imposes an attractive tradeoff between the achievable throughput and the power consumption while ensuring fairness among users

    Mechanical photoluminescence excitation spectra of a strongly driven spin-mechanical system

    Full text link
    We report experimental studies of a driven spin-mechanical system, in which a nitrogen vacancy (NV) center couples to out-of-plane vibrations of a diamond cantilever through the excited-state deformation potential. Photoluminescence excitation studies show that in the unresolved sideband regime and under strong resonant mechanical driving, the excitation spectra of a NV optical transition feature two spectrally sharp peaks, corresponding to the two turning points of the oscillating cantilever. In the limit that the strain-induced frequency separation between the two peaks far exceeds the NV zero-phonon linewidth, the spectral position of the individual peak becomes sensitive to minute detuning between the mechanical resonance and the external driving force. For a fixed optical excitation frequency near the NV transition, NV fluorescence as a function of mechanical detuning features resonances with a linewidth that can be orders of magnitude smaller than the intrinsic linewidth of the mechanical mode. This enhanced sensitivity to mechanical detuning can potentially provide an effective mechanism for mechanical sensing, for example, mass sensing via measurements of induced changes in the mechanical oscillator frequency

    Finger-NestNet: Interpretable Fingerphoto Verification on Smartphone using Deep Nested Residual Network

    Full text link
    Fingerphoto images captured using a smartphone are successfully used to verify the individuals that have enabled several applications. This work presents a novel algorithm for fingerphoto verification using a nested residual block: Finger-NestNet. The proposed Finger-NestNet architecture is designed with three consecutive convolution blocks followed by a series of nested residual blocks to achieve reliable fingerphoto verification. This paper also presents the interpretability of the proposed method using four different visualization techniques that can shed light on the critical regions in the fingerphoto biometrics that can contribute to the reliable verification performance of the proposed method. Extensive experiments are performed on the fingerphoto dataset comprised of 196 unique fingers collected from 52 unique data subjects using an iPhone6S. Experimental results indicate the improved verification of the proposed method compared to six different existing methods with EER = 1.15%.Comment: a preprint paper accepted in wacv2023 worksho

    Learning Discriminative Features with Class Encoder

    Full text link
    Deep neural networks usually benefit from unsupervised pre-training, e.g. auto-encoders. However, the classifier further needs supervised fine-tuning methods for good discrimination. Besides, due to the limits of full-connection, the application of auto-encoders is usually limited to small, well aligned images. In this paper, we incorporate the supervised information to propose a novel formulation, namely class-encoder, whose training objective is to reconstruct a sample from another one of which the labels are identical. Class-encoder aims to minimize the intra-class variations in the feature space, and to learn a good discriminative manifolds on a class scale. We impose the class-encoder as a constraint into the softmax for better supervised training, and extend the reconstruction on feature-level to tackle the parameter size issue and translation issue. The experiments show that the class-encoder helps to improve the performance on benchmarks of classification and face recognition. This could also be a promising direction for fast training of face recognition models.Comment: Accepted by CVPR2016 Workshop of Robust Features for Computer Visio

    S3^3FD: Single Shot Scale-invariant Face Detector

    Full text link
    This paper presents a real-time face detector, named Single Shot Scale-invariant Face Detector (S3^3FD), which performs superiorly on various scales of faces with a single deep neural network, especially for small faces. Specifically, we try to solve the common problem that anchor-based detectors deteriorate dramatically as the objects become smaller. We make contributions in the following three aspects: 1) proposing a scale-equitable face detection framework to handle different scales of faces well. We tile anchors on a wide range of layers to ensure that all scales of faces have enough features for detection. Besides, we design anchor scales based on the effective receptive field and a proposed equal proportion interval principle; 2) improving the recall rate of small faces by a scale compensation anchor matching strategy; 3) reducing the false positive rate of small faces via a max-out background label. As a consequence, our method achieves state-of-the-art detection performance on all the common face detection benchmarks, including the AFW, PASCAL face, FDDB and WIDER FACE datasets, and can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.Comment: Accepted by ICCV 2017 + its supplementary materials; Updated the latest results on WIDER FAC
    • …
    corecore