320 research outputs found

    Dynamic Resource Scheduling in Mobile Edge Cloud with Cloud Radio Access Network

    Get PDF
    Nowadays, by integrating the cloud radio access network (C-RAN) with the mobile edge cloud computing (MEC) technology, mobile service provider (MSP) can efficiently handle the increasing mobile traffic and enhance the capabilities of mobile devices. But the power consumption has become skyrocketing for MSP and it gravely affects the profit of MSP. Previous work often studied the power consumption in C-RAN and MEC separately while less work had considered the integration of C-RAN with MEC. In this paper, we present an unifying framework for the power-performance tradeoff of MSP by jointly scheduling network resources in C-RAN and computation resources in MEC to maximize the profit of MSP. To achieve this objective, we formulate the resource scheduling issue as a stochastic problem and design a new optimization framework by using an extended Lyapunov technique. Specially, because the standard Lyapunov technique critically assumes that job requests have fixed lengths and can be finished within each decision making interval, it is not suitable for the dynamic situation where the mobile job requests have variable lengths. To solve this problem, we extend the standard Lyapunov technique and design the VariedLen algorithm to make online decisions in consecutive time for job requests with variable lengths. Our proposed algorithm can reach time average profit that is close to the optimum with a diminishing gap (1/V) for the MSP while still maintaining strong system stability and low congestion. With extensive simulations based on a real world trace, we demonstrate the efficacy and optimality of our proposed algorithm

    Maximizing the Profit of Cloud Broker with Priority Aware Pricing

    Get PDF
    A practical problem facing Infrastructure-as-a-Service (IaaS) cloud users is how to minimize their costs by choosing different pricing options based on their own demands. Recently, cloud brokerage service is introduced to tackle this problem. But due to the perishability of cloud resources, there still exists a large amount of idle resource waste during the reservation period of reserved instances. This idle resource waste problem is challenging cloud broker when buying reserved instances to accommodate users' job requests. To solve this challenge, we find that cloud users always have low priority jobs (e.g., non latency-sensitive jobs) which can be delayed to utilize these idle resources. With considering the priority of jobs, two problems need to be solved. First, how can cloud broker leverage jobs' priorities to reserve resources for profit maximization? Second, how to fairly price users' job requests with different priorities when previous studies either adopt pricing schemes from IaaS clouds or just ignore the pricing issue. To solve these problems, we first design a fair and priority aware pricing scheme, PriorityPricing, for the broker which charges users with different prices based on priorities. Then we propose three dynamic algorithms for the broker to make resource reservations with the objective of maximizing its profit. Experiments show that the broker's profit can be increased up to 2.5× than that without considering priority for offline algorithm, and 3.7× for online algorithm

    Improving mobility of silicon metal-oxide-semiconductor devices for quantum dots by high vacuum activation annealing

    Full text link
    To improve mobility of fabricated silicon metal-oxide-semiconductor (MOS) quantum devices, forming gas annealing is a common method used to mitigate the effects of disorder at the Si/SiO2 interface. However, the importance of activation annealing is usually ignored. Here, we show that a high vacuum environment for implantation activation is beneficial for improving mobility compared to nitrogen atmosphere. Low-temperature transport measurements of Hall bars show that peak mobility can be improved by a factor of two, reaching 1.5 m^2/(Vs) using high vacuum annealing during implantation activation. Moreover, the charge stability diagram of a single quantum dot is mapped, with no visible disturbance caused by disorder, suggesting possibility of fabricating high-quality quantum dots on commercial wafers. Our results may provide valuable insights into device optimization in silicon-based quantum computing.Comment: 13 pages, 4 figure

    The Efficacy of Chinese Herbal Medicine as an Adjunctive Therapy for Advanced Non-small Cell Lung Cancer: A Systematic Review and Meta-analysis

    Get PDF
    Many published studies reflect the growing application of complementary and alternative medicine, particularly Chinese herbal medicine (CHM) use in combination with conventional cancer therapy for advanced non-small cell lung cancer (NSCLC), but its efficacy remains largely unexplored. The purpose of this study is to evaluate the efficacy of CHM combined with conventional chemotherapy (CT) in the treatment of advanced NSCLC. Publications in 11 electronic databases were extensively searched, and 24 trials were included for analysis. A sum of 2,109 patients was enrolled in these studies, at which 1,064 patients participated in CT combined CHM and 1,039 in CT (six patients dropped out and were not reported the group enrolled). Compared to using CT alone, CHM combined with CT significantly increase one-year survival rate (RR = 1.36, 95% CI = 1.15-1.60, p = 0.0003). Besides, the combined therapy significantly increased immediate tumor response (RR = 1.36, 95% CI = 1.19-1.56, p<1.0E-5) and improved Karnofsky performance score (KPS) (RR = 2.90, 95% CI = 1.62-5.18, p = 0.0003). Combined therapy remarkably reduced the nausea and vomiting at toxicity grade of III-IV (RR = 0.24, 95% CI = 0.12-0.50, p = 0.0001) and prevented the decline of hemoglobin and platelet in patients under CT at toxicity grade of I-IV (RR = 0.64, 95% CI = 0.51-0.80, p<0.0001). Moreover, the herbs that are frequently used in NSCLC patients were identified. This systematic review suggests that CHM as an adjuvant therapy can reduce CT toxicity, prolong survival rate, enhance immediate tumor response, and improve KPS in advanced NSCLC patients. However, due to the lack of large-scale randomized clinical trials in the included studies, further larger scale trials are needed. © 2013 Li et al.published_or_final_versio

    VulDeePecker: A Deep Learning-Based System for Vulnerability Detection

    Full text link
    The automatic detection of software vulnerabilities is an important research problem. However, existing solutions to this problem rely on human experts to define features and often miss many vulnerabilities (i.e., incurring high false negative rate). In this paper, we initiate the study of using deep learning-based vulnerability detection to relieve human experts from the tedious and subjective task of manually defining features. Since deep learning is motivated to deal with problems that are very different from the problem of vulnerability detection, we need some guiding principles for applying deep learning to vulnerability detection. In particular, we need to find representations of software programs that are suitable for deep learning. For this purpose, we propose using code gadgets to represent programs and then transform them into vectors, where a code gadget is a number of (not necessarily consecutive) lines of code that are semantically related to each other. This leads to the design and implementation of a deep learning-based vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker). In order to evaluate VulDeePecker, we present the first vulnerability dataset for deep learning approaches. Experimental results show that VulDeePecker can achieve much fewer false negatives (with reasonable false positives) than other approaches. We further apply VulDeePecker to 3 software products (namely Xen, Seamonkey, and Libav) and detect 4 vulnerabilities, which are not reported in the National Vulnerability Database but were "silently" patched by the vendors when releasing later versions of these products; in contrast, these vulnerabilities are almost entirely missed by the other vulnerability detection systems we experimented with

    Ultrafast switchable spin-orbit coupling for silicon spin qubits via spin valves

    Full text link
    Recent experimental breakthroughs, particularly for single-qubit and two-qubit gates exceeding the error correction threshold, highlight silicon spin qubits as leading candidates for fault-tolerant quantum computation. In the existing architecture, intrinsic or synthetic spin-orbit coupling (SOC) is critical in various aspects, including electrical control, addressability, scalability, etc. However, the high-fidelity SWAP operation and quantum state transfer (QST) between spin qubits, crucial for qubit-qubit connectivity, require the switchable nature of SOC which is rarely considered. Here, we propose a flexible architecture based on spin valves by electrically changing its magnetization orientation within sub-nanoseconds to generate ultrafast switchable SOC. Based on the switchable SOC architecture, both SWAP operation of neighbor spin qubits and resonant QST between distant spins can be realized with fidelity exceeding 99% while considering the realistic experimental parameters. Benefiting from the compatible processes with the modern semiconductor industry and experimental advances in spin valves and spin qubits, our results pave the way for future construction of silicon-based quantum chips.Comment: 22 pages, 5 figure
    • …
    corecore