23 research outputs found

    Light-Mediated Liberation of Enzymatic Activity: “Small Molecule” Caged Protein Equivalents

    Get PDF
    Light-activatable (“caged”) proteins have been used to correlate, with exquisite temporal and spatial control, intracellular biochemical action with global cellular behavior. However, the chemical or genetic construction of caged proteins is nontrivial, with subsequent laborious introduction into living cells, potentially problematic competition with natural endogenous counterparts, and challenging intracellular incorporation at levels equivalent to the natural enzymes. We describe the design, synthesis, and characterization of small molecular equivalents of a caged Src kinase. These compounds are easy to prepare and function by inhibiting the action of the natural unmodified enzyme

    Generation of Non-Nucleotide CD73 Inhibitors Using a Molecular Docking and 3D-QSAR Approach

    No full text
    Radiotherapy and chemotherapy are conventional cancer treatments. Around 60% of all patients who are diagnosed with cancer receive radio- or chemotherapy in combination with surgery during their disease. Only a few patients respond to the blockage of immune checkpoints alone, or in combination therapy, because their tumours might not be immunogenic. Under these circumstances, an increasing level of extracellular adenosine via the activation of ecto-5’-nucleotidase (CD73) and consequent adenosine receptor signalling is a typical mechanism that tumours use to evade immune surveillance. CD73 is responsible for the conversion of adenosine monophosphate to adenosine. CD73 is overexpressed in various tumour types. Hence, targetting CD73’s signalling is important for the reversal of adenosine-facilitated immune suppression. In this study, we selected a potent series of the non-nucleotide small molecule inhibitors of CD73. Molecular docking studies were performed in order to examine the binding mode of the inhibitors inside the active site of CD73 and 3D-QSAR was used to study the structure–activity relationship. The obtained CoMFA (q2 = 0.844, ONC = 5, r2 = 0.947) and CoMSIA (q2 = 0.804, ONC = 4, r2 = 0.954) models showed reasonable statistical values. The 3D-QSAR contour map analysis revealed useful structural characteristics that were needed to modify non-nucleotide small molecule inhibitors. We used the structural information from the overall docking and 3D-QSAR results to design new, potent CD73 non-nucleotide inhibitors. The newly designed CD73 inhibitors exhibited higher activity (predicted pIC50) than the most active compound of all of the derivatives that were selected for this study. Further experimental studies are needed in order to validate the new CD73 inhibitors

    An Innovative Approach to Address Neurodegenerative Diseases through Kinase-Targeted Therapies: Potential for Designing Covalent Inhibitors

    No full text
    Owing to the dysregulation of protein kinase activity in various diseases such as cancer and autoimmune, cardiovascular, neurodegenerative, and inflammatory conditions, the protein kinase family has emerged as a crucial drug target in the 21st century. Notably, many kinases have been targeted to address cancer and neurodegenerative diseases using conventional ATP-mimicking kinase inhibitors. Likewise, irreversible covalent inhibitors have also been developed for different types of cancer. The application of covalent modification to target proteins has led to significant advancements in the treatment of cancer. However, while covalent drugs have significantly impacted medical treatment, their potential for neurodegenerative diseases remains largely unexplored. Neurodegenerative diseases present significant risks to brain function, leading to progressive deterioration in sensory, motor, and cognitive abilities. Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), and multiple sclerosis (MS) are among the various examples of such disorders. Numerous research groups have already reported insights through reviews and research articles on FDA-approved covalent inhibitors, revealing their mechanisms and the specific covalent warheads that preferentially interact with particular amino acid residues in intricate detail. Hence, in this review, we aim to provide a concise summary of these critical topics. This summary endeavors to guide medicinal chemists in their quest to design covalent inhibitors for protein kinases, specifically targeting neurodegenerative diseases

    Design of Novel IRAK4 Inhibitors Using Molecular Docking, Dynamics Simulation and 3D-QSAR Studies

    No full text
    Treatment of several autoimmune diseases and types of cancer has been an intense area of research over the past two decades. Many signaling pathways that regulate innate and/or adaptive immunity, as well as those that induce overexpression or mutation of protein kinases, have been targeted for drug discovery. One of the serine/threonine kinases, Interleukin-1 Receptor Associated Kinase 4 (IRAK4) regulates signaling through various Toll-like receptors (TLRs) and interleukin-1 receptor (IL1R). It controls diverse cellular processes including inflammation, apoptosis, and cellular differentiation. MyD88 gain-of-function mutations or overexpression of IRAK4 has been implicated in various types of malignancies such as Waldenström macroglobulinemia, B cell lymphoma, colorectal cancer, pancreatic ductal adenocarcinoma, breast cancer, etc. Moreover, over activation of IRAK4 is also associated with several autoimmune diseases. The significant role of IRAK4 makes it an interesting target for the discovery and development of potent small molecule inhibitors. A few potent IRAK4 inhibitors such as PF-06650833, RA9 and BAY1834845 have recently entered phase I/II clinical trial studies. Nevertheless, there is still a need of selective inhibitors for the treatment of cancer and various autoimmune diseases. A great need for the same intrigued us to perform molecular modeling studies on 4,6-diaminonicotinamide derivatives as IRAK4 inhibitors. We performed molecular docking and dynamics simulation of 50 ns for one of the most active compounds of the dataset. We also carried out MM-PBSA binding free energy calculation to identify the active site residues, interactions of which are contributing to the total binding energy. The final 50 ns conformation of the most active compound was selected to perform dataset alignment in a 3D-QSAR study. Generated RF-CoMFA (q2 = 0.751, ONC = 4, r2 = 0.911) model revealed reasonable statistical results. Overall results of molecular dynamics simulation, MM-PBSA binding free energy calculation and RF-CoMFA model revealed important active site residues of IRAK4 and necessary structural properties of ligand to design more potent IRAK4 inhibitors. We designed few IRAK4 inhibitors based on these results, which possessed higher activity (predicted pIC50) than the most active compounds of the dataset selected for this study. Moreover, ADMET properties of these inhibitors revealed promising results and need to be validated using experimental studies

    Reduced Amide Bond Peptidomimetics. (4 S

    No full text

    Design and Synthesis of a Novel PLK1 Inhibitor Scaffold Using a Hybridized 3D-QSAR Model

    No full text
    Polo-like kinase 1 (PLK1) plays an important role in cell cycle progression and proliferation in cancer cells. PLK1 also contributes to anticancer drug resistance and is a valuable target in anticancer therapeutics. To identify additional effective PLK1 inhibitors, we performed QSAR studies of two series of known PLK1 inhibitors and proposed a new structure based on a hybridized 3D-QSAR model. Given the hybridized 3D-QSAR models, we designed and synthesized 4-benzyloxy-1-(2-arylaminopyridin-4-yl)-1H-pyrazole-3-carboxamides, and we inspected its inhibitory activities to identify novel PLK1 inhibitors with decent potency and selectivity

    Discovery of 3-alkyl-5-aryl-1-pyrimidyl-1H-pyrazole derivatives as a novel selective inhibitor scaffold of JNK3

    No full text
    3-alkyl-5-aryl-1-pyrimidyl-1H-pyrazole derivatives were designed and synthesised as selective inhibitors of JNK3, a target for the treatment of neurodegenerative diseases. Following previous studies, we have designed JNK3 inhibitors to reduce the molecular weight and successfully identified a lead compound that exhibits equipotent activity towards JNK3. Kinase profiling results also showed high selectivity for JNK3 among 38 kinases. Among the derivatives, the IC50 value of 8a, (R)-2-(1-(2-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)amino)pyrimidin-4-yl)-5-(3,4-dichlorophenyl)-1H-pyrazol-3-yl)acetonitrile exhibited 227 nM, showing the highest inhibitory activity against JNK3
    corecore