48 research outputs found

    670-nm light treatment reduces complement propagation following retinal degeneration

    Get PDF
    AIM: Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. METHODS: Sprague–Dawley (SD) rats were pretreated with 9 J/cm(2) 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). RESULTS: Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. CONCLUSIONS: Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy

    Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina

    Get PDF
    INTRODUCTION Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. METHODS SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. RESULTS C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. CONCLUSIONS Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.Funding provided by Australian Research Council Centres of Excellence Program Grant (CE0561903)

    Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    Get PDF
    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.We thank Douwe Bartstra (Vereniging tot Behoud van de Gasbronnen in Noord-Holland, The Netherlands), Carla Frijters (Paques BV, The Netherlands) and Teun Veuskens (Laboratory of Microbiology, WUR, The Netherlands) for sampling; Martin Meirink (Hoogheemraadschap Hollands Noorderkwartier, The Netherlands) for physicochemical data; Freek van Sambeek for providing Figure 1; Lennart Kleinjans (Laboratory of Microbiology, WUR, The Netherlands) for help with pyrosequencing analysis, Irene Sánchez-Andrea (Laboratory of Microbiology, WUR, The Netherlands) for proof-reading and Katharina Ettwig (Department of Microbiology, Radboud University Nijmegen, The Netherlands) for providing M. oxyfera DNA. We want to thank all anonymous reviewers for valuable contributions. This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)

    Complement in glomerular injury

    Get PDF
    In recent years, research into the role of complement in the immunopathogenesis of renal disease has broadened our understanding of the fragile balance between the protective and harmful functions of the complement system. Interventions into the complement system in various models of immune-mediated renal disease have resulted in both favourable and unfavourable effects and will allow us to precisely define the level of the complement cascade at which a therapeutic intervention will result in an optimal effect. The discovery of mutations of complement regulatory molecules has established a role of complement in the haemolytic uremic syndrome and membranoproliferative glomerulonephritis, and genotyping for mutations of the complement system are already leaving the research laboratory and have entered clinical practice. These clinical discoveries have resulted in the creation of relevant animal models which may provide crucial information for the development of highly specific therapeutic agents. Research into the role of complement in proteinuria has helped to understand pathways of inflammation which ultimately lead to renal failure irrespective of the underlying renal disease and is of major importance for the majority of renal patients. Complement science is a highly exciting area of translational research and hopefully will result in meaningful therapeutic advances in the near future

    Prevention of age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula

    A Comparison of Acceleration Techniques Applied to the SOR Method

    Get PDF
    In this paper we investigate the performance of four different SOR acceleration techniques on a variety of linear systems. These are the Dancis's accelerations, Wynn's epsilon algorithm and Graves-Morris's generalisation of Aitken's delta-squared algorithm. The experimental results show that these accelerations can reduce the amount of work required to obtain a solution and that their rates of convergence are generally less sensitive to the value of the relaxation parameter than the straightforward SOR method. Necessary conditions for the reduction in the computational work required for convergence are given for each of the accelerations, based on the number of floating-point operations. It is shown experimentally that the reduction in the number of iterations is related to the separation between the two largest eigenvalues of the SOR iteration matrix for a given omega. This separation influences the convergence of all the acceleration techniques above. Another important characteristic exhibited by these accelerations is that even if the number of iterations is not reduced significantly compared to the SOR method, they are competitive in terms of number of floating-point operations used and thus they reduce the overall computational workload

    Highly chemical reactive ion etching of gallium nitride

    No full text
    A highly chemical reactive ion etching process has been developed for MOVPE-grown GaN on sapphire. The key element for the enhancement of the chemical property during etching is the use of a fluorine containing gas in a chlorine based chemistry. In the perspective of using GaN substrates for homo-epitaxy of high quality GaN/AlGaN structures we have used the above described RIE process to smoothen Ga-polar GaN substrates. The RMS value, measured by AFM, went from 20 Angstrom (after mechanical polishing) down to 4 Angstrom after 6 minutes of RIE. Etching N-polar GaN resulted in a higher etch rate than Ga-polar materials (165 vs. 110 nm/min) but the resulting surface was quite rough and suffers from instability problems. Heat treatment and HCl dip showed a partial recovery of Schottky characteristics after RIE

    Growth of GaN on nano-crystalline diamond substrates

    No full text
    In this study GaN has been grown on nano-crystalline diamond substrates utilizing metal-organic chemical vapour deposition (MOCVD). It is shown that the growth of closed GaN films onto synthetic diamond substrates is feasible, when applying the correct buffer layer and growth parameters. XRD measurements showed that the GaN formed is of wurzite structure and polycrystalline, but the high intensity of the (0002) diffraction peak indicates a preferential crystallite orientation. This preferred 100011 orientation was confirmed by SEM analysis. The optical quality of the deposited GaN layer was investigated using cathodoluminescence and showed a large yellow luminescence peak. This work comprises a first step in preparing heterogeneous layers and GaN devices with a diamond heat sink as a substrate, facilitating the thermal management of these devices. (C) 2009 Elsevier B.V. All rights reserved.status: publishe

    Comparison of GaN and AlN nucleation layers for the oriented growth of GaN on diamond substrates

    No full text
    In this study, {0001} oriented GaN crystals have been grown on freestanding, polycrystalline diamond substrates using AlN and GaN nucleation layers (NLs). XRD measurements and SEM analysis showed that the application of a thin AlN NL gives the best structural results, because AlN has a thermal expansion coefficient in between GaN and diamond and thus delocalizes the stress to two interfaces. The optical quality of the layers, investigated with Raman microscopy and photoluminescence spectroscopy, is similar. Although no lateral epitaxy is obtained, new insight is gained on the nucleation of GaN on diamond substrates facilitating the growth of GaN epilayers on polycrystalline diamond substrates. (C) 2009 Elsevier B.V. All rights reserved.status: publishe
    corecore