459 research outputs found

    Commentary: Wild psychometrics: Evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes

    Get PDF
    A commentary on Wild psychometrics: Evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes by Shaw, R. C., Boogert, N. J., Clayton, N. S., and Burns, K. C. (2015). Anim. Behav. 109, 101–111. doi: 10.1016/j.anbehav.2015.08.00

    Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field

    Get PDF
    The study was funded by Department of Agriculture and Food through the Research Stimulus Fund Programme (Grant RSF 06383) in collaboration with the Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Ireland.peer-reviewedOver-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N + N2-N) mole fractions were measured in situ with a push–pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 ÎŒg kg−1 d−1, respectively. Estimated N2O-N/(N2O-N + N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L−1) than no cover crop (0.90 mg L−1) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances

    Editorial: Advances in Facet Theory Research: Developments in Theory and Application and Competing Approaches

    Get PDF
    Editorial on the Research Topic Advances in Facet Theory Research: Developments in Theory and Application and Competing Approaches. This article is part of the Research Topic Advances in Facet Theory Research: Developments in Theory and Application and Competing Approaches

    The Big Bad Wolf: The Formation of a Stereotype

    Get PDF
    In our essay, we explore this image of a stereotypical Big Bad Wolf, and we explain how many of the themes, which keep resurfacing in debates about wolves in present-day culture, can be thought of as being associated with this stereotype. In order to investigate these possible associations, we consider human perceptions of wolf behavior and evaluate how these may correspond to attributes associated with immorality or wickedness especially as such human characteristics are expressed in the Jungian shadow archetype of evil. We further explore how the stereotype of the Big Bad Wolf may be created through the unconscious merger of actual wolf behavior with notions associated with evil in human beings. We first delineate the agenda of this essay and then provide a short overview of research on human-wolf relations in Central Europe. We then review aspects of wolf biology that may be particularly salient and potentially problematic to a peaceful coexistence between wolves and humans. Finally, we identify correspondences between those aspects of wolf behavior and the human understanding of what constitutes an evil act and how this correspondence may reinforce the concept of the Big Bad Wolf

    Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Get PDF
    BACKGROUND: Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB) transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. RESULTS: Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA) system that is capable of activating the expression of genes under control of a Tet response element (TRE) promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. CONCLUSION: Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene-trap tTA could provide a means for both annotating mouse genes and creating a resource of mice that express a regulable transcription factor in temporally- and tissue-specific patterns for conditional gene expression studies. These mice would be a valuable resource to the mouse genetics community for purpose of dissecting mammalian gene function
    • 

    corecore