40 research outputs found

    Basic fibroblast growth factor promotes the generation of microtubule-associated protein 2-positive cells from microglia

    Get PDF
    We recently demonstrated that microglia as multipotential stem cells give rise to microtubule-associated protein 2 (MAP2)-positive and glial fibrillary acidic protein (GFAP)-positive cells and that microglia-derived MAP2-positive cells possess properties of functional neurons. In this study, we investigated the role of fibroblast growth factor (FGF) signaling in the molecular mechanism underlying the generation of microglia-derived MAP2-positive and GFAP-positive cells. Real-time quantitative PCR analyses demonstrated that mRNA levels of a family of three FGF receptors, Fgfr1-3, were upregulated in microglia treated with 70% fetal bovine serum (FBS). Immunocytochemical analyses demonstrated that basic FGF (bFGF) promoted the generation of microglia-derived MAP2-positive and GFAP-positive cells, and the FGF receptor tyrosine kinase inhibitor SU5402 and the MEK inhibitor PD98059 both inhibited this process. Western blot analyses demonstrated that bFGF increased phosphorylated ERK1/2 levels without altering total ERK1/2 levels. These results suggest that bFGF promotes the generation of microglia-derived MAP2-positive and GFAP-positive cells via FGF receptors and the ERK-MAP kinase pathway

    Abeta-induced BACE-1 cleaves N-terminal sequence of mPGES-2.

    Get PDF
    We previously indicated that amyloid beta (Abeta) augments protein levels of beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) through oxidative stress. In this study, we revealed that BACE-1 is involved in the cleavage of membrane-bound prostaglandin E2 synthase-2 (mPGES-2) in its N-terminal portion, which, in turn, enhanced the generation of prostaglandin E2 (PGE2). PGE2 results in increased Abeta production, initiating a cell-injuring cycle. Using rat primary cortical neurons, a 48 h treatment with Abeta 1-42 (5 microM) resulted in the enhanced extracellular PGE2 levels up to about 1 ng/mL, which was attenuated by treatment with a BACE-1 inhibitor (200 nM). A synthetic peptide sequence of 20-amino acids that included the cleavage site of mPGES-2 (HTARWHL RAQDLHERS AAQLSLSS) was cleaved by recombinant BACE-1, confirmed using reverse-phase high-performance liquid chromatography. Cleaved or activated mPGES-2 augments the generation of PGE2. In addition, mPGES-2 was determined to be colocalized with BACE-1 and cyclooxygenase-2 in the perinuclear region in cells after exposure to Abeta. Exposure of neurons to PGE2 led to cell death, and Abeta production was enhanced by PGE2 (1 ng/mL, 48 h). Collectively, these results suggest that Abeta might cause neuroinflammation that aggravates Alzheimer's disease pathogenesis

    LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11

    No full text
    The transmembrane protein ADAM22 is expressed at high levels in the brain. From its molecular structure, ADAM22 is thought to be an adhesion molecule or a receptor because it has functional disintegrin-like and cysteine-rich sequences in its ectodomain. The phenotypic analysis of ADAM22-deficient mice has indicated the important roles played by ADAM22 in proper neuronal function and peripheral nerve development, however, the precise molecular function of ADAM22 is still unknown. To understand the function of ADAM22 on a molecular basis, we identified ADAM22 binding proteins by using immunoprecipitation and mass spectrometric analysis. This analysis revealed that Leucine-rich glioma inactivated 1 (LGI1) is the most potent ADAM22 binding protein in mouse brain. By our quantitative cell-ELISA system, we demonstrated the specific binding of LGI1 with ADAM22. Furthermore, we showed that LGI4, a putative ADAM22 ligand, also bound to ADAM22. Characterization of the binding specificity of LGI1 and LGI4 suggested that ADAM22 is not a sole receptor, because ADAM11 and ADAM23 had a significant binding ability to LGI1 or LGI4. Therefore, LGI-ADAM system seems to be regulated not only by the affinity but also by the cell-type-specific expression of each protein. Our findings provide new clues to understand the functions of LGI1 and LGI4 as an ADAMs ligand.</p

    PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes.

    Get PDF
    Reduction in or dysfunction of glutamate transporter 1 (GLT1) is linked to several neuronal disorders such as stroke, Alzheimer's disease, and amyotrophic lateral sclerosis. However, the detailed mechanism underlying GLT1 regulation has not been fully elucidated. In the present study, we first demonstrated the effects of mammalian target of rapamycin (mTOR) signaling on GLT1 regulation. We prepared astrocytes cultured in astrocyte-defined medium (ADM), which contains several growth factors including epidermal growth factor (EGF) and insulin. The levels of phosphorylated Akt (Ser473) and mTOR (Ser2448) increased, and GLT1 levels were increased in ADM-cultured astrocytes. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor or an Akt inhibitor suppressed the phosphorylation of Akt (Ser473) and mTOR (Ser2448) as well as decreased ADM-induced GLT1 upregulation. Treatment with the mTOR inhibitor rapamycin decreased GLT1 protein and mRNA levels. In contrast, rapamycin did not affect Akt (Ser473) phosphorylation. Our results suggest that mTOR is a downstream target of the PI3K/Akt pathway regulating GLT1 expression
    corecore