4 research outputs found

    Dynamics of metal nanodroplets

    No full text
    In this work flat metal nanostructures on inert substrates like glass, silicon or graphite have been illuminated by single intensive laser pulses with fluences above the melting threshold. The liquid structures produced in this way are far from their equilibrium shape and a dewetting process starts. On a timescale of a few nanoseconds, the liquid but still flat nanostructure transforms toward a sphere. During this deformation the center of mass moves upward, which can lead to detachment of droplets from the surface due to inertia. The velocity of the detaching nanodroplets is measured with a light barrier technique. The experiment shows that the velocity of the detached droplet is constant over a large range of laser energy densities. This supports the model of a dewetting driven process: The droplet gains surface energy by transforming toward a sphere which is then converted into kinetic energy. Loss mechanisms like excitation of droplet oscillations and dissipation due to viscous friction are discussed. With this model the escape velocity was predicted for nanostructures of different materials and forms, hence other material parameters like surface tension or density and has been confirmed experimentally.The droplets are landed on another surface. Two scenarios are found: There are spheres with a similar shape as the droplet or heavily deformed structures. These structures of splashing and rebounding are identical to the structures which can be observed in the macroscopic impact of liquids. The two scenarios can be explained by different temperatures of the droplets when reaching the substrate

    Coherent acoustic oscillations of nanoscale Au triangles and pyramids : influence of size and substrate

    No full text
    We investigate the impulsively excited acoustic dynamics of nanoscale Au triangles of different sizes and thicknesses on silicon and glass substrates. We employ high-speed asynchronous optical sampling in order to study the damping of the acoustic vibrations with high sensitivity in the time domain. From the observed damping dynamics we deduce the reflection coefficient of acoustic energy from the gold substrate interface. The observed damping times of coherent acoustic vibrations are found to be significantly longer than expected from the acoustic impedance mismatch for an ideal gold substrate interface, hence pointing towards a reduced coupling strength. The strength of the coupling can be determined quantitatively. For Au triangles with large lateral size-to-thickness ratio, i.e. a small aspect ratio, the acoustic dynamics is dominated by a thickness oscillation similar to that of a closed film. For triangles with large aspect ratio the coherent acoustic excitation consists of a superposition of different three-dimensional modes which exhibit different damping times

    Control of magnetic anisotropy and magnetic patterning of perpendicular Co/Pt multilayers by laser irradiation

    No full text
    We report an approach to altering the magnetic properties of (111) textured Co/Pt multilayer films grown on sapphire (0001) substrates in a controlled way using single-pulse laser irradiation. The as-grown films reveal a strong perpendicular magnetic anisotropy induced by interfacial anisotropy. We show that laser irradiation can chemically mix the multilayer structure particularly at the interfaces, hence reducing the perpendicular magnetic anisotropy and coercivity in a controlled manner depending on laser fluence. As a result, perpendicular films can also be magnetically patterned into hard and soft magnetic regions using a regular two-dimensional lattice of polystyrene particles acting as an array of microlenses

    Jumping nanodroplets : a new route towards metallic nano-particles

    No full text
    The dewetting process, which appears upon laser-induced melting of flat nanostructures and leads to a jumping of the droplets off the surface, is used for deposition of nano-particles onto a second substrate. Limitations in materials and particle sizes are discussed and experimentally verified. The experiments show that a variety of metals can be deposited in a size ranging from tens to several hundreds of nanometers
    corecore