203 research outputs found

    A Model for cAMP-mediated cGMP Response in Dictyostelium discoideum

    Get PDF
    In Dictyostelium discoideum extracellular cyclic AMP (cAMP), as shown by previous studies, induces a transient accumulation of intracellular cyclic guanosine-5'-monophosphate (cGMP), which peaks at 10 s and recovers basal levels at 30 s after stimulation, even with persistent cAMP stimulation. Additional investigations have shown that the cAMP-mediated cGMP response is built up from surface cAMP receptor-mediated activation of guanylyl cyclase and hydrolysis of cGMP by phosphodiesterase. The regulation of these activities was measured in detail on a seconds time-scale, demonstrating complex adaptation of the receptor, allosteric activation of cGMP-phosphodiesterase by cGMP, and potent inhibition of guanylyl cyclase by Ca2+. In this paper we present a computer model that combines all experimental data on the cGMP response. The model is used to investigate the contribution of each structural and regulatory component in the final cGMP response. Four models for the activation and adaptation of the receptor are compared with experimental observations. Only one model describes the magnitude and kinetics of the response accurately. The effect of Ca2+ on the cGMP response is simulated by changing the Ca2+ concentrations outside the cell (Ca2+ influx) and in stores (IP3-mediated release) and changing phospholipase C activity. The simulations show that Ca2+ mainly determines the magnitude of the cGMP accumulation; simulations are in good agreement with experiments on the effect of Ca2+ in electropermeabilized cells. Finally, when cGMP-phosphodiesterase activity is deleted from the model, the simulated cGMP response is elevated and prolonged, which is in close agreement with the experimental observations in mutant stmF that lacks this enzyme activity. We conclude that the computer model provides a good description of the observed response, suggesting that the main structural and regulatory components have been identified

    cGMP potentiates receptor-stimulated Ca2+ influx in Dictyostelium discoideum

    Get PDF
    AbstractBinding of extracellular cAMP to surface receptors induces at least two responses in Dictyostelium discoideum, the G-protein-dependent activation of guanylyl cyclase, and the opening of a plasma membrane Ca2+ channel. Some experiments suggest that intracellular cGMP opens the Ca2+ channel, while others demonstrate that the channel can open in the absence of functional G-proteins (and thus in the absence of cGMP formation). We have analysed 45Ca2+ uptake in three mutants with altered cGMP formation. Mutant stmF shows a prolonged cGMP response due to deletion of an intracellular phosphodiesterase. Uptake of receptor-stimulated 45Ca2+ is enhanced about two-fold in this mutant if compared to wild-type cells, suggesting that cGMP regulates the opening of the channel. Mutant KI-7 has very low levels of surface cAMP receptors, but nevertheless an enhanced receptor-stimulated cGMP response due to a defect in the turn-off of guanylyl cyclase. This mutant shows poor receptor-stimulated 45Ca2+ uptake, suggesting that cGMP alone is not sufficient to open the Ca2+ channel. Finally, mutant KI-8 has no cGMP due to the absence of nearly all guanylyl cyclase activity. The mutant shows significant but reduced 45Ca2+ uptake (19% of wild-type; 60% if corrected for the reduced level of surface cAMP receptors), suggesting that the channel can open in the absence of cGMP. Taken together, the results demonstrate that receptor-stimulated Ca2+ influx is not directly induced by cGMP formation; it can occur in the absence of cGMP, but is potentiated two- to four-fold by cGMP

    The Cell Density Factor CMF Regulates the Chemoattractant Receptor cAR1 in Dictyostelium

    Get PDF
    Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess ~40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of ~200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein β subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.
    • …
    corecore