120 research outputs found
Switching the sphingolipid rheostat in the treatment of diabetes and cancer comorbidity from a problem to an advantage
© 2015 Nikolas K. Haass et al. Cancer and diabetes are among the most common diseases in western societies. Epidemiological studies have shown that diabetic patients have a significantly higher risk of developing a number of different types of cancers and that individuals with comorbidity (cancer and diabetes/prediabetes) have a poorer prognosis relative to nondiabetic cancer patients. The increasing frequency of comorbidity of cancer and diabetes mellitus, mainly type 2 diabetes, has driven the development of therapeutic interventions that target both disease states. There is strong evidence to suggest that balancing the sphingolipid rheostat, ceramide - sphingosine - sphingosine-1-phosphate (S1P) is crucial in the prevention of diabetes and cancer and sphingosine kinase/S1P modulators are currently under development for the treatment of cancer and diabetes. This paper will highlight some of the complexities inherent in the use of the emerging sphingosine kinase/S1P modulators in the treatment of comorbidity of diabetes and cancer
A stochastic mathematical model of 4D tumour spheroids with real-time fluorescent cell cycle labelling
In vitro tumour spheroid experiments have been used to study avascular tumour growth and drug
design for the last 50 years. Unlike simpler two-dimensional cell cultures, tumour spheroids exhibit heterogeneity within the growing population of cells that is thought to be related to spatial
and temporal differences in nutrient availability. The recent development of real-time fluorescent
cell cycle imaging allows us to identify the position and cell cycle status of individual cells within
the growing population, giving rise to the notion of a four-dimensional (4D) tumour spheroid. In
this work we develop the first stochastic individual-based model (IBM) of a 4D tumour spheroid
and show that IBM simulation data qualitatively and quantitatively compare very well with experimental data from a suite of 4D tumour spheroid experiments performed with a primary human
melanoma cell line. The IBM provides quantitative information about nutrient availability within
the spheroid, which is important because it is very difficult to measure these data in standard
tumour spheroid experiments. Software required to implement the IBM is available on GitHub,
https://github.com/ProfMJSimpson/4DFUCCI
A phase I, open-label, randomized crossover study to assess the effect of dosing of the MEK 1/2 inhibitor Selumetinib (AZD6244; ARRY-142866) in the presence and absence of food in patients with advanced solid tumors
<p><b>Purpose:</b> This Phase I study assessed whether food influences the rate and extent of selumetinib absorption in patients with advanced solid malignancies and determined the safety, tolerability, and pharmacokinetic (PK) profile of selumetinib and its active metabolite N-desmethyl-selumetinib in fed and fasted states.</p>
<p><b>Methods:</b> A single dose of 75 mg selumetinib was to be taken with food on Day 1 followed by a single dose of 75 mg after fasting for at least 10 h on Day 8, or vice versa, followed by twice daily dosing of 75 mg selumetinib from Day 10. Plasma concentrations and PK parameters were determined on Days 1 and 8. Patients could continue to receive selumetinib for as long as they benefitted from treatment.</p>
<p><b>Results:</b> In total, 31 patients were randomized to receive selumetinib; 15 to fed/fasted sequence and 16 to fasted/fed sequence. Comprehensive PK sampling was performed on 11 and 10 patients, respectively. The geometric least-squares means of C<sub>max</sub> and AUC for selumetinib were reduced by 62% (ratio 0.38 90% CI 0.29, 0.50) and 19% (ratio 0.81 90% CI 0.74, 0.88), respectively, under fed compared with fasting conditions. The rate of absorption (t<sub>max</sub>) of selumetinib (fed) was delayed by approximately 2.5 h (median). The food effect was also observed for the active metabolite N-desmethyl-selumetinib. Selumetinib was well tolerated.</p>
<p><b>Conclusions:</b> The presence of food decreased the extent of absorption of selumetinib. It is recommended that for further clinical studies, selumetinib be taken on an empty stomach. Selumetinib demonstrated an acceptable safety profile in the advanced cancer population.</p>
Integrating BRAF/MEK inhibitors into combination therapy for melanoma
The discovery of BRAF mutations in melanoma has not yet translated into clinical success, suggesting that BRAF/MEK inhibitors will need to be combined with other agents. In the current review, we discuss other pathways likely to be important for melanoma progression and suggest possible drug combinations for future clinical testing
Targeting BRAF for patients with melanoma
The prognosis of patients with metastatic melanoma is poor and not influenced by systemic therapy with cytotoxic drugs. New targeted agents directed against the RAS-RAF-MEK-ERK pathway show promising activity in early clinical development and particular interest is focused on selective inhibitors of mutant BRAF, which is present in one half of the cases of metastatic melanoma. The majority of patients on early trials of these drugs develop secondary resistance and subsequent disease progression and it is, therefore, critical to understand the underlying escape mechanisms leading to resistance
Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors
Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology
Matricellular Proteins Produced by Melanocytes and Melanomas: In Search for Functions
Matricellular proteins are modulators of cell-matrix interactions and cellular functions. The group includes thrombospondin, osteopontin, osteonectin/SPARC, tenascin, disintegrins, galectins and CCN proteins. The production of matricellular proteins such as osteopontin, SPARC or tenascin is highly upregulated in melanoma and other tumors but little is known about their functions in tumor growth, survival, and metastasis. The distribution pattern of CCN3 differs from most other matricellular proteins, such that it is produced abundantly by normal melanocytes, but is not significantly expressed in melanoma cells. CCN3 is known to inhibit melanocyte proliferation and stimulate adhesion to collagen type IV, the main component of the basement membrane. CCN3 has a unique role in securing adhesion of melanocytes to the basement membrane distinct from other melanoma-produced matricellular proteins which act as de-adhesive molecules and antagonists of focal adhesion. Qualitative and quantitative changes in matricellular protein expression contribute to melanoma progression similar to the E-cadherin to N-cadherin class switch, allowing melanoma cells to escape from keratinocyte control
Narrowing the knowledge gaps for melanoma
Cutaneous melanoma originates from pigment producing melanocytes or their precursors and is considered the deadliest form of skin cancer. For the last 40 years, few treatment options were available for patients with late-stage melanoma. However, remarkable advances in the therapy field were made recently, leading to the approval of two new drugs, the mutant BRAF inhibitor vemurafenib and the immunostimulant ipilimumab. Although these drugs prolong patients' lives, neither drug cures the disease completely, emphasizing the need for improvements of current therapies. Our knowledge about the complex genetic and biological mechanisms leading to melanoma development has increased, but there are still gaps in our understanding of the early events of melanocyte transformation and disease progression. In this review, we present a summary of the main contributing factors leading to melanocyte transformation and discuss recent novel findings and technologies that will help answer some of the key biological melanoma questions and lay the groundwork for novel therapies
- …